

E.ON's Activities on IGCC and Zero Emissions Plant

Robin Irons - Technical Head, Zero Emission Plant

Rugeley - 20 June 2007

e.on

The Need for New Capacity

- By 2015 the UK will see up to 26GW of plant closures (LCPD and nuclear life expiry)
- With no new build, demand may exceed supply in winter peaks by about 2011

•Estimated 36 GW of new capacity needed by 2020 ~ 45% of UK capacity Replacement with gas-fired CCGTs will not reduce overall CO2 emissions – and lead to ~70% gas dependency.

Replacement Generation Options

Considerations include:

- •Government Policy (including post-Kyoto position, Security of Supply)
- the Energy White Paper, EC Policy Initiatives, G8
- Environmental Performance
- •Commercial Viability (including cost of fuel and carbon)
- •Public Acceptability (a factor for new nuclear?)
- •Technology maturity (clean coal technologies, marine?)
- •Reliability (e.g. the intermittency of wind)
- •Extent of Deployment (can enough be built in time; e.g small scale CHP, nuclear consenting)

CO₂ abatement from coal – twin track approach

CO2 Capture Options

GASIFICATION WITH CAPTURE

IGCC with CO₂ Capture

Particulate

Gas

Current Position Shift •Killingholme

Reacto Removal Cleanup Essence of the \$1B US FutureGen project •EU Hypogen/Dynamis Particulates project has similar goal Sulfur Byproduct Air Separator Compresse Air High Sulfur Fuel Oil Oxygen Refinery Tars Petroleum Coke Coal, Biomass Con Air - **11** Gasifier Steam Steam ΞН Steam Turbine Vitrified Solids

23 November 2007, E.ON UK, Page 7

E.ON UK's CCS project at Killingholme

Overview

- Killingholme will nominally be a 450MW IGCC+CCS fuelled on coal
 Built on or close to the
- existing Killingholme site
- Multiple CO₂ storage options identified in the Southern North Sea (SNS)

Killingholme could be operational by late 2011 23 Noven

The existing E.ON site is the front running site on which to build Killingholme IGCC

Multiple CO_2 storage sites identified in the SNS

Killingholme is well positioned for CO₂ evacuation from Easington and Theddelthorpe
The vast majority of gas fields in the SNS are capable of storing CO₂
The SNS is capable of storing CO₂, Killingholme will produce 3MT of CO₂ pa.

Killingholme could be operational by 2011

Milestones

■Sept 2006	Feasibility study reports
■Jan 2007 - July 2007	Pre-FEED study
■Aug 2007 - May 2008	Full FEED study
∎June 2008	Investment decision
•July 2008- Sept 2011	Construction
•Dec 2011	Plant commissioning

This timetable is ambitions but is designed to ensure E. ON remains frontrunning utility on coal based carbon capture. Clearly there are factors that could cause delay © 2007 E.ON 23 November 2007, E.ON UK, Page

11

OXYFUEL

Construction

Oxygen tank and evaporator

Construction

Carrier stream – ground floor

Civil works for bulk stream tower

Testing: results

Reduction in net flow Operation: changeover Emissions (CO_2 , NO, SO_2 , CO) and C burnout Combustion stability

- 1. Warm up on gasoil, then switchover to coal for air baseline test
- 2. Revert to gasoil during switchover of carrier stream
- 3. Revert to coal for full switchover (bulk)

e.on uk

e.on uk

e.on uk

Emissions - NO

Furnace exit gas temperature

Conclusions

~75% reduction in exhaust gas requiring treatment ~80% CO₂ content in dry exhaust gas Reduction in NO concentration Increase in CO, SO₂ concentration Reduction in absolute levels of all emissions Burnout degraded at low O₂ enrichment Flame stability degraded Reduced flame and gas temperatures Increasing O_2 enrichment = closer to air

© 2007 E.ON

>50 hours of operation in full oxyfuel mode Improved stability during operation Flame detection issues resolved One man operation Optimised controller response paramete Recalibration of instruments Fuel feed arrangements – difficult coal >80% (dry) CO₂ concentration Proof of trips and interlocks

O₂ enrichment – higher levels, enrichment of primary Heat transfer

- Fuel feeding and conveying
- Flame detection
- Tramp air ingress
- Ash behaviour/fate of trace elements
- Fouling behaviour
- Corrosion

- Oxyfuel combustion achievable
- Staged combustion can reduce NO emissions, if required
- Combustion efficiency similar to air can be achieved
- Optimum O_2 enrichment likely to result in lower volume flow than air
- SO_2 (and others?) concentrated by ~4 times
- Attention needs to be paid to control and instrumentation Scope for increased enrichment (>26%) without exceeding materials constraints, whilst reducing shaft work
- Safety and efficiency improvements possible in milling