

Doosan Babcock Energy

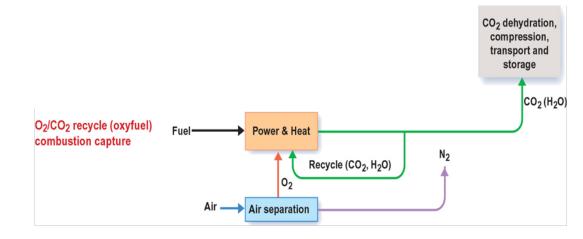
Oxyfuel CO₂ Capture for Pulverised Coal – An Evolutionary Approach

THE COAL RESEARCH FORUM – 18th Annual Meeting ZERO EMISSIONS POWER – CURRENT DEVELOPMENTS

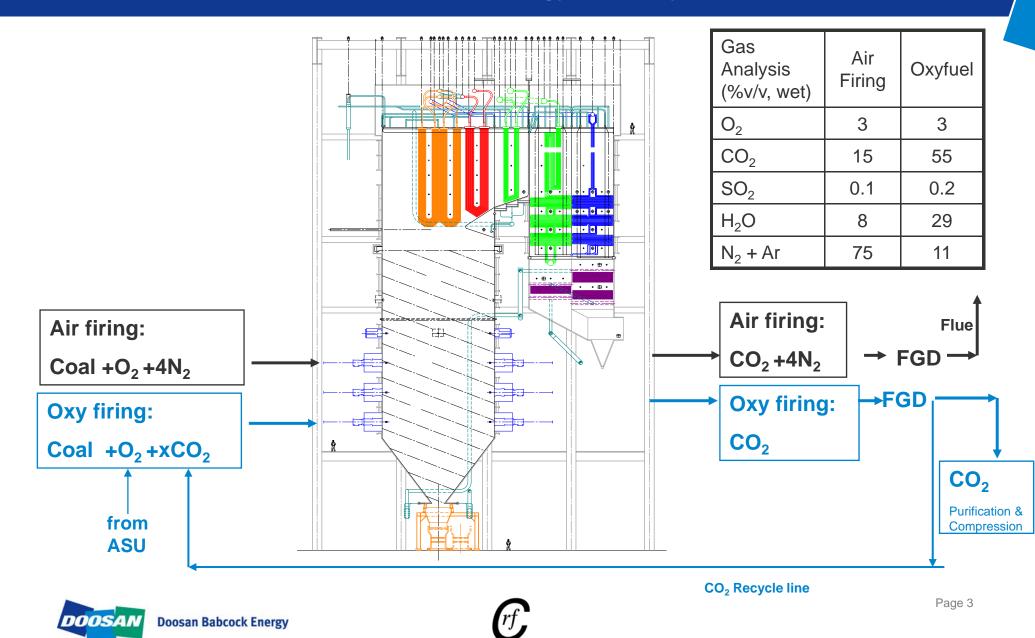
Gnanapandithan Sekkappan, Ragi S. Panesar and Scott A. Hume

Date: June 20, 2007 Department: Process Technology and Development

Presentation Outline


- Key Features
- Low Risk Evolutionary Approach
- Foundation
- Low Risk Oxyfuel ASC PF Power Plant Process Flow Diagrams
- Low Risk Approach General Considerations
- Major Power Plant Components Low Risk Approach
- Power Plant Operational Expectations
- Future Developments
- Conclusions

Oxyfuel CO₂ Capture – Key Features

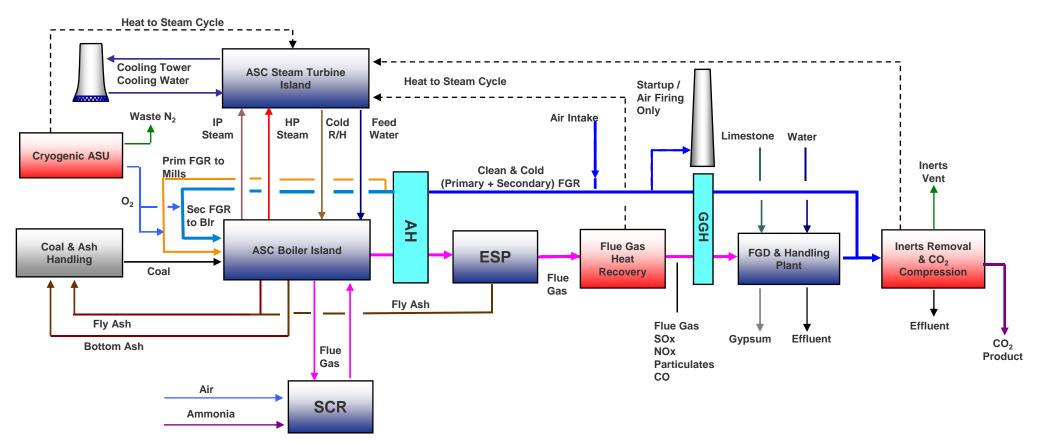

- Use of mixture of near pure oxygen and CO₂ rich flue gas recycle as oxidant for fuel combustion; flue gas recycle mainly used to
 - retain conventional milling plant and combustion equipment
 - retain conventional furnace and boiler arrangement
 - maintain combustion and boiler thermal performance as that of conventional air-fired PF boiler
- Air Separation Unit (ASU) to remove inerts from air and supply near pure oxygen
- Purification and compression of CO₂ rich Oxyfuel flue gas to deliver high pressure CO₂ product.

Advanced Supercritical Boiler Technology with Oxyfuel

Low Risk Evolutionary Approach

- Real or perceived risk associated with introduction of new process/ technology
- Issue of scale of process and key plant components
- Build upon previous operational and practical experience
- Retain full air-firing capability in recognition of the above
- Boiler design to meet 100% MCR rating in both air-firing and Oxyfuel firing mode
- Delivery of low risk Oxyfuel technology comprising well proven, familiar plant components
- Deliver minimal technical and commercial risk to power generation

Low Risk Evolutionary Approach - Foundation


• Investigations on Oxyfuel technology by Doosan Babcock since the early 1990s

- Oxyfuel technology is competitive with alternate CO₂ capture technologies
- Reduction in net plant efficiency due to CO₂ capture addition is similar or lower to that of alternate technologies.
- Cost of electricity increase due to capture addition is also similar or lower to that of alternate technologies
- Attractive in terms of similarities to air-fired plant
- Wide experience base of air-fired PF power generation technology

With Oxyfuel Capability

Low Risk Approach – General Considerations

- Build upon air-fired PF power generation technology operational and practical experience and utilisation of familiar main plant equipment
 - Provide generators with confidence in the near term to move towards near emission free fossil fuel power generation
- Utilisation of well proven and commercially available plant components
 - Conventional coal handling, coal pulverising, combustion equipment, boiler, steam turbine, ASU
- Retain full air-firing capability, with appropriate and well proven emission control
 - Minimal risk to power generation

Major Power Plant Components - Low Risk Approach (1)

• Air Separation Unit

- Well proven, industry leading cryogenic air separation units
- Low purity and pressure cycle

• Milling Equipment

- Conventional plant
- Use of clean/ dry flue gas to dry and transport coal
- Oxygen concentration and volumetric flow rate of primary FGR equivalent to that of primary air in conventional plant – studies anticipate similar mill performance for Oxyfuel compared to air-firing

Combustion Equipment

- Early application of Oxyfuel combustion will utilise burner designs derived from airfiring experience
- Proven low NO_X burner designs can be adapted to obtain acceptable combustion performance

Major Power Plant Components - Low Risk Approach (2)

• Furnace and boiler

Advanced Supercritical Steam Cycle

Doosan Babcock Energy

- Conventional two-pass balanced draught design
- Conventional furnace arrangement similar mechanical design limits
- Radiant heat transfer dominated by particulates; marginal increase in overall radiant heat transfer (due to increase in non-luminous radiation by CO₂/H₂O)
- FEGT typically slightly lower than the air-firing equivalent
 avoids high temperature slagging in early banks
- Clean FGR corrosion no worse than for air-firing

Major Power Plant Components - Low Risk Approach (3)

• NO_X reduction

- Appropriate NO_{X} reduction technologies to ensure legislative compliance-whilst in air-firing mode
- Majority NO_X reduction by in-furnace measures (Oxyfuel and air-firing)
- Oxyfuel mode: Bypass of SCR (if provided) whilst Oxyfuel operation, if not required to assist in NO_x reduction

• Air Heater / Gas-Gas Heater

Conventional regenerative type with appropriate material selection to mitigate cold end corrosion

• Flue Gas Recycle (FGR)

- Single FGR take-off, with bifurcation to provide primary and secondary streams
- Similar layout to conventional FGR systems
- Clean FGR

Major Power Plant Components - Low Risk Approach (4)

• Particulate Removal Equipment

- Conventional ESP to ensure legislative compliance whilst in air-firing mode
- Oxyfuel mode mitigates erosion in fans and CO₂ capture equipment
- Operating temperature (Oxyfuel mode) : 160 to 200°C Not dissimilar to that of some existing air-fired plants

• Fans

- FD Fan as FGR Fan
- PA Fan as PFGR Fan
- ID Fan as ID fan
- Volume flow through FD & ID Fans unlikely to be exceeded in Oxyfuel mode (low volume flow)
- Fan impellers, casing materials to suit air and Oxyfuel gas compositions

Major Power Plant Components - Low Risk Approach (5)

• Flue Gas Heat Recovery

- Similar to heat recovery equipment used in Combined Cycle Power Plants and CHP Plants
- Already realised in PF Power Plants also
- Considerations to protection against acid corrosion

• SO_x Reduction

- In FGR loop
- Conventional FGD Plant
- Ensures SO_2 and SO_3 concentrations in the furnace for Oxyfuel no worse than air-firing
- Additional mitigation measures for control of SO_3 , if required (e.g. wet ESP)
- Co-capture of balance SO_X along with CO_2 or 100% removal in CO_2 purification unit

Major Power Plant Components - Low Risk Approach (6)

• Moisture Removal Equipment

- Commercially available direct contact coolers or flue gas condensers
- Ensures adequate fuel drying while in Oxyfuel mode

Heating of ASU Oxygen Stream

- No. of options available
- Oxygen stream preheating with LP steam chosen
- Preheating to 150°C allows use of carbon steel materials

Major Power Plant Components - Low Risk Approach (7)

Oxygen Stream Injection/ Mixing

- Primary FGR oxygen concentration equivalent to that in air
- Injection downstream of gas-gas heater
 - Eliminates cross leakage losses
 - Eliminates contamination (due to oxygen stream leakage) of CO₂ rich flue gas to be processed
 - Eliminates risk of high oxygen concentration/ particle impingement on high speed fan blades
 - Reduces ASU, CO₂ Compression and Inerts Removal plant load
- No direct injection into the PF pipes/ burners
 - No oxygen stream supply lines at burner front
 - Eliminates any safety issues at boiler front

Major Power Plant Components - Low Risk Approach (8)

• Steam Turbine Island

- Conventional arrangement
- Low grade heat recovery to water-steam-condensate cycle
 - reduces bleed steam requirements
 - increased gross power generation partially offsets capture equipment power requirements

• CO₂ compression and Inerts Removal Plant

- Multiple stage flash separation
- Commercially available CO₂ compressors
- Balance of Plant
 - Conventional equipment

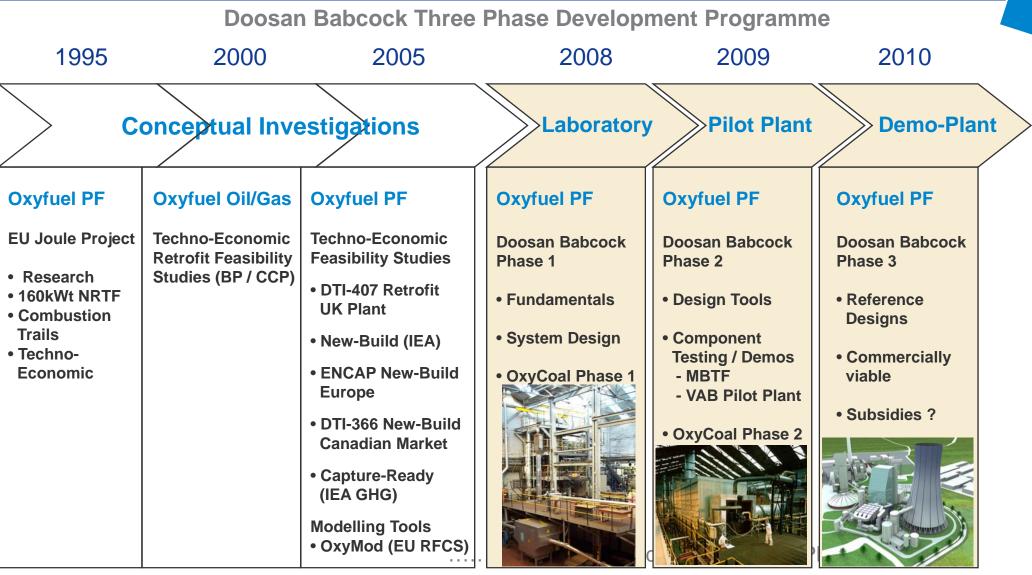
Power Plant Operational Expectations

• Safety

- Following established safe operating practices used in other industries (extensive experience exists on handling oxygen and CO₂)
- Balanced draught design mitigates CO₂ rich flue gas leakage related safety risks
- FGR loop CO₂ rich flue gas leakage safety risks mitigation by design
- Careful selection of oxygen concentration for the FGR streams
- Use of low temperature and low pressure oxygen
- Homogenous mixing of oxygen with FGR
- Purging of FGR duct work

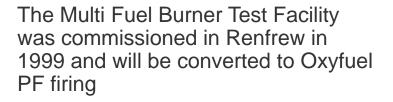
Power Plant Operational Expectations

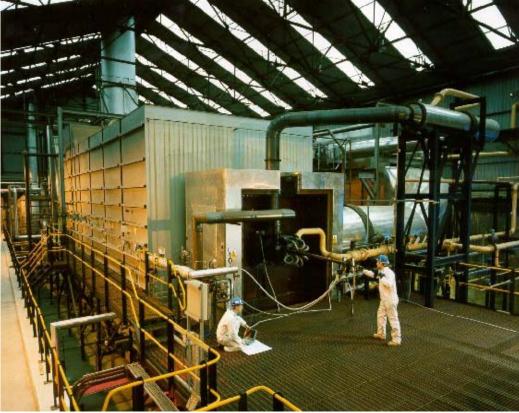
• Operability/ Flexibility


- Oxyfuel PF power plant controls primarily based on modifications to conventional air-fired PF power plant control technologies
- Initial investigations through application of dynamic mathematical models show that operability characteristics similar to that of conventional air-fired PF plant is achievable
- Selection of appropriate number of ASU/ CO₂ compression units
- Liquid Oxygen Storage

• Reliability and Availability

- Process integration expected to have some impact
- First generation Oxyfuel PF Plants Lower Availability
- Full air-firing capability contributes to improvement in availability
- Maintainability no significant differences





Demonstration of full-size utility Oxycoal combustion in a collaborative project

First full - scale test of Oxyfuel firing in the world

90 MW_{th} Burner Test Facility

Conclusions

- Low risk Oxyfuel technology is technically viable
- Full air-firing capability minimises commercial risk
- Application of an evolutionary approach to Oxyfuel CO₂ capture Will provide generators confidence to move towards near emission free power generation with fossil fuels
- Oxyfuel PF technology for CO₂ capture can be offered to utility plant operators' post 2010.
- Future improvements may completely diminish air-firing capability requirements

Thank You For Your Attention

