Measured Demonstration of Low Carbon Success:
Demonstration Project of a Carbon-Neutral Energy System

Understanding the Low Carbon Economy
Lucas House, University of Birmingham

14th November 2007

Rupert Gammon
Scope of Presentation

- Description of the HARI project
 - Existing RE system at West Beacon Farm
 - Intermittency and grid balancing
 - Energy storage
 - The role of hydrogen
 - New additions for the HARI project
 - System Integration
 - System modelling
 - Ongoing work and future plans for WBF

- Wider issues that follow from the HARI project
 - Hydrogen for transport applications vs. electricity storage
 - The Hydrogen Economy

- Conclusion
HARI Project

- Hydrogen and Renewables Integration (HARI) project
 - Existing renewables
 - Wish to create a stand-alone sustainable energy system
 - Requires storage to achieve autonomy from grid
 - Hybrid battery-hydrogen storage system
 - Develop and validate models for
 - Sizing of components
 - Designing similar systems for wider deployment
 - Strategic models also developed
 - Demonstrate the principles of the ‘hydrogen economy’
 - Remote/island, stand-alone systems (early adopters)
 - Implications for national power systems (long term)
Existing System

- 2 x 25kW wind turbines
- 13kWp photovoltaics
- 3.2kW hydro
Intermittency and Grid Balancing

- RE (and nuclear) supply cannot be modulated to match demand
- Energy storage is needed to balance varying supply with varying demand
Energy Storage Options

- Electricity storage can be achieved by many technologies
 - e.g. flywheels, supercaps., batteries, comp. air, pumped hydro, flow cells, hydrogen, etc.

- Advantages of hydrogen
 - Better for long timescales (from 4 days up to inter-seasonal)
 - Better for large capacities
 - Lower cost
 - Smaller footprint
 - Dissociation of charge/discharge rates and store capacity
 - Flexibility means widely applicable (e.g. transport fuel, portable and stationary power)
 - No harmful emissions
 - Can ‘float’ indefinitely

- Disadvantages of hydrogen
 - Low round-trip efficiency
 - Meeting the challenge of high capacity, long timescale energy storage comes at a high energetic cost
 - But there is a lack of alternatives (advanced batteries?, flow cells?)
 - Scope for improvement of efficiency
 - Technical advances and cost reductions needed
How Does Hydrogen Store Energy?

- **When surplus energy is available**
 - Electricity is fed into an electrolyser
 - Splits water into hydrogen and oxygen
- **Storage period**
 - Hydrogen is stored
 - As a compressed gas, super-cooled liquid, solid-state (e.g. hydrides), chemical (e.g. methanol, ammonia)
- **When energy is required**
 - Electricity is generated by a fuel cell (or ICE)
 - Hydrogen and oxygen recombine to make water
New Components

- **Electrolyser**
 - Hydrogenics (previously Stuart Energy / Vandenborre)
 - Alkaline
 - 36kW module
 - 25bar (nominal)
 - 8Nm³/h
 - 99.999% H₂ purity
New Components

- Hydrogen store
 - BOC
 - Pressurised gaseous H₂
 - 48 steel cylinders
 (0.475m³ water volume each)
 - Up to 137bar
 - 2856Nm³
 - Approximately 3.8MWh equiv. (electricity production via FCs)
New Components

- Fuel cells
 - Intelligent Energy
 - PEM
 - 2kW (4kW peak)
 - CHP
 - Plug Power
 - PEM
 - 5kW
 - Will be converted to CHP
Integration of System

Existing System
- Utility
- Battery
- Wind
- Solar
- Hydro
- Critical Loads
- Opportune Loads
- Electric Vehicles

Modifications
- Fuel Cells (Car) (CHP)
- DC Bus
- H₂ Store
- No Utility

© 2003 Rupert Gammon, Loughborough University
Rationalisation of Electrical System

- **Batteries required**
 - Short-term storage (complementary to H₂)
 - Electrolyser control
 - System control based on SOC

- **Conversion of wind turbines to run off-grid**
 - Frequency control by power electronics
 - Excitation of magnetic fields (in induction generators)

- **High Voltage DC bus system – recently abandoned**
 - 560-750V
 - Rectified 3-phase
 - Standard power electronics
 - High temperature NiNaCl batteries
 - Allow high voltage
 - Designed for vehicles
 - High self-discharge
 - Not compatible with HARI requirements (esp. 100% recharge requirement)

- **Medium Voltage DC bus System – currently being introduced**
 - 110-140V
 - Lead-acid batteries
System Modelling

- System model in Matlab Simulink
 - Validated against real-world operation
 - From weather to loads (via REs and H₂)
 - Can be used for system design (…anywhere!)
- Electrolyser test run
 - Predicted by model (yellow) compared to measured (magenta)
 - H₂ is 5% high
 - Electrical is 1% low
Energy Balance

- Data from HARI Project
 - Yellow = RE Supply, Magenta = Electrical demand
Future Plans

- Improve energy efficiency
 - Heat capture (CHP/CHF)
 - Recycle water (use RO less)
 - Power electronics (modularise, part-load efficiencies)
 - Standing losses (reduce/eliminate)
 - Insulation

- Metal-hydrides (Birmingham University)

- Hydrogen refuelling station
 - Important to include transport elements into system
 - Dual-fuel (H2 & petrol) Prius, FC range-extender in electric car
 - Sale of ‘green’ hydrogen

- ‘Tandem’ cells
 - Photovoltaics & electrolysis all-in-one
 - Does not perform load balancing role, only H₂ production

- Further modelling and analysis
RE Powered Electrolysis

- Existing systems designed for continuous (steady-state) mains supply
 - Pressurised (complex, expensive, leaky & less efficient)
 - Dynamic RE supply damages components and wastes energy in **pressurised** electrolysers
- Low pressure systems (with external compression) are preferable for REs
 - Simplicity, reliability & low cost necessary for early adopter markets
 - Internal pressurisation **not** “for free” anyway
- Waste heat capture (CHF) should be employed to increase overall efficiency
- BOP losses
 - Power electronics
- Operational range
 - Turndown to nearly zero
- First phase: get system working

- Second phase: get system working *efficiently!*
Approx. 70% energy is lost in the elec-H$_2$-elec round-trip!

... but ...

- these losses become much less significant when H$_2$ transport fuel is included in the “Hydrogen Economy” model

In moving beyond fossil fuels, energy for transport must also come from low-carbon/renewable sources

- Demands more low-carbon/renewable primary resource (to feed both grid and transport)

By including transport fuel production in the model:

- Fuel production becomes a load management tool for more efficient use of dynamic and intermittent renewable energy
- Reduces the size and frequency of power deficits on the electricity grid
- Reduces the need to store grid electricity
- Reduces wasteful elec-H$_2$-elec round-trip losses
- Electricity reaching the end-user is more likely to have come directly from the source, rather than through the storage cycle
- If, however, it has passed through the storage cycle, capturing by-product heat (CHP/F) improves efficiency
- Storage obviates (fossil fuelled) spinning reserve

Hydrogen transfers surplus energy from the power to the transport sector

- Hydrogen is not generally for electricity storage
Integration of Transport

- H_2 fuel production (for transport) becomes simply a load management technique for an RE supplied grid.
- H_2 is rarely, if ever, converted back to grid electricity.
Revised H₂ Economy (National Scale)

- The UK electricity system with a very large supply of renewable energy (about 3 times average electricity demand)
Upstream vs. Downstream

- Electrolysis better carried out downstream:
 - Aggregation of supply and demand
 - Smoothes variations
 - Easier to control
 - Equipment can be cheaper, longer-lasting, more reliable and more efficient
 - Greater opportunity to avoid storage
 - Hydrogen produced at the point of use
 - e.g. garage forecourts
 - Upstream electrolysis (e.g. at the wind farm) will be a niche
 - Centralised electrolysis with transmission-level pipelines for large-scale storage

- No need to build extensive hydrogen distribution-level pipelines
 - Use existing electrical networks
 - May need strengthening in places – still cheaper than building H₂ infrastructure
 - Hydrogen fuelled, domestic fuel cell CHP units unlikely to be a mainstream application
 - However, natural gas (or hythane) fuelled ones may be used extensively in short- to medium-term markets
Conclusion

- The addition of a hydrogen energy storage system has allowed a renewable energy system to operate on a stand-alone basis.

- Demonstrates how energy self-sufficiency could be achieved even in an off-grid situation.

- Demonstrates fundamental principles of the ‘hydrogen economy’ concept:
 - Implications that are relevant to national-scale energy systems (hence Bryte Energy’s strategic work).

- Research is ongoing, but there is significant scope for:
 - Improved energy efficiency
 - Cost reduction
 - Technical development (e.g. Bryte Energy’s electrolyser development)
 - Refinement of system integration and control
Any Questions?

For further information contact:
rgammon@bryte-energy.com

Thank You for your attention