

The Economics of Alternate Fuels for Power Generation

Richard Green

Institute for Energy Research and Policy

Carbon content of fuel at plant

What does a power station cost?

- What does it cost to build?
- What does it cost to keep available?
- What does it cost to generate each unit?
- What does it cost to decommission?
- What does it cost the environment?

Cost components

	Fuel cost / efficiency	Operations & Maintenance Cost	Capital cost £/kW	Plant life (years)
Combined Cycle Gas Turbine	58% a	£7/kW-year + £2/MWh a	440 a	35 a
Coal (without CCS)	44.9% ^a	£24/kW-year + £2/MWh a	900 a	50 a
Nuclear	£5/MWh a	£57/kW-year ^a	1,407 a	40 a
Biomass	£27/MWh e	£45/kW-year ^e	1,485 e	25 °
Marine	Nil	£42/kW-year e	1,060 e	15 °
Wind – onshore	Nil	£44/kW-year ^a	819 a	20 a
Wind – offshore	Nil	£46/kW-year ^a	1,532 a	20 a
Micro-generation	80% ^d	£90/kW-year ^b	1,000 b	15 b

Sources: a DTI (2006); b Energy Saving Trust (2005); c Enviros (2005); d Newborough (2004);

Thinking Networks

^e Scottish Energy and Environment Foundation (2005);

What do the answers depend on?

- How much the station produces
- The cost of capital
- Fuel prices
- The cost of carbon
 - Price under the EU ETS
 - Permit allocation

Costs over a year

£/MW-year

The load-duration curve

The impact of permits

Profits with no carbon policy

Profits with carbon trading

Marginal cost of generation

Marginal cost of generation

UK fuel and power prices

Source: Spectron

Thinking Networks

The cost of low-carbon power

- Supergen scenarios for 2020
 - "Environmental Awakening"
 - 360 TWh, micro-generation and renewables
 - "Supportive Regulation"
 - 415 TWh, nuclear renaissance
 - "High Carbon"
 - 435 TWh, gas-fired plant

Scenarios by Elders et al, economic analysis by Yago et al

Impacts on the electricity industry

	Investment (£bn)		CO ₂ saved (m tonnes)
Environmental Awakening	43	52	73
Supportive Regulation	34	49	43
High Carbon	15	40	-

Figures are based on DTI "Central favouring coal" prices (a medium-high gas price)

Impact on the economy

- Electricity price rises by £9-13/MWh
- 2005 industrial price averaged £50/MWh
- 2005 domestic price averaged £82/MWh
- Electricity and gas average 2.5% of consumers expenditure – might rise to 3%
- Fuel poverty (expenditure share over 10%)
 might rise by ¼ million to 2¾ million

Impact on industrial costs

Increase in costs	Sectors affected
Less than 1%	90% of the economy
1% to 2%	Engineering, textiles, chemicals
2% to 3%	Industrial dyes and gases, inorganic chemicals, metals, pulp and paper
Over 3%	Cement

The big picture

The Stern Review, figure 10.1

Conclusions

- Low-carbon generators will cost more than high-carbon, ignoring carbon costs
- System integration presents challenges
- Overall cost increases manageable

Thinking Networks