Supercritical Water
Biomass Gasification:
Fuel Gas from Waste

Dr. Paul Hamley
Clean Technology Group
School of Chemistry University of Nottingham
www.nottingham.ac.uk/supercritical
Menu

• Waste Sources
• Gasification Technologies
• Properties of Supercritical Water (SCW)
• SCW Gasification – Process and Potential
Waste Sources

- Animal waste
- Animal carcasses
- Domestic / Municipal
- Forestry
- Packaged food
- Vegetable
Gasification Technologies

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200°C</td>
<td>220 Atm</td>
</tr>
<tr>
<td>1000°C</td>
<td>220 Atm</td>
</tr>
<tr>
<td>800°C</td>
<td>220 Atm</td>
</tr>
<tr>
<td>600°C</td>
<td>220 Atm</td>
</tr>
<tr>
<td>400°C</td>
<td>220 Atm</td>
</tr>
<tr>
<td>200°C</td>
<td>220 Atm</td>
</tr>
</tbody>
</table>

- Conventional
- Pyrolysis
- Low temperature
- Pyrolysis (charcoal)
- Supercritical water
- Supercritical water + catalyst
Pyrolysis

• 400-550°C, 1-5 bar

• Anaerobic

• Slow – charcoal

• Fast – dark brown mobile liquid
Conventional Gasification

- 700 – 1200°C
- Need to drive off water before gasification
- Water content can be ca. 90% by mass
- Inefficient for high water content materials
- Suited to dry materials (e.g. sawdust)
- Problems:
 - Char (always at 1 bar), tar
Tar Avoidance Options

- >1000°C
- Dolomite
- Alkali metal oxides
- Catalyst
- Secondary air injection
Char

- Result of polymerisation of fragments broken down by hydrolysis
- Builds up at low temperatures
- Can be burnt off at high T

Avoidance strategies
- Rapid heating zone
- Catalyst
- SCW
Properties of Water

- Covalent molecule
- Extensive hydrogen bonding
- Dissociation: Acid/Base
- Dielectric constant
- Unusual properties of ice
A significant change of the dielectric constant can be obtained by changing P and T.

Change of ε with P and T increase the dissolving power. At 300°C, the H_2O is similar to acetone: dissolving organic compounds and precipitating inorganic salts.
Supercritical Water

- T_c 374 °C; p_c 218 atm.
- H_2O, 374°C
- Hexane
 - ε 6
 - 1.8
- ρ 0.3
- 0.8

- Organics dissolve; salts precipitate
- O_2 is miscible with H_2O above T_c
The ionic product (K_w)

K_w depends significantly on the temperature and/or pressures.

$$KW = [H^+] [OH^-]$$

As the dissociation proceeds, the nature of the water itself changes. Water becomes an **acidic** or **alkaline catalyst**.

$-\log K_w = 11$

$-\log K_w = 14$

Optimisation of acid/based-catalysed reaction by P and T

K_w depends significantly on the temperature and/or pressures.
SCW Gasification

- SC Water miscible with nonpolar organic compounds
- Self dissociation – high OH⁻
- Hydrolysis

- 600-800°C (no catalyst)
- 500-650°C (with metal catalyst)
- 220-250 bar – gases produced at pressure
SCW Gasification

- No need to drive off water
- Suitable for high moisture content materials
- Optimum 700°C, 3% aqueous feedstock
 100% gasification achievable
- Need energy source for preheating incoming feedstock slurry to ca. 400°C
sc Water conditions are routinely in use

- Ratcliffe-on-Soar Power Station
 - 4x 500MW Steam Turbines
 - 165 bar
 - 568°C
Heating Energy

• Externally
 Burn portion of biomass to heat incoming slurry

• Internally
 Inject O_2 in first stage, combust part of feed in SCW
Supercritical Water Gasification Process

- Feed Solution
 - 400-500°C
- Air
 - 600-700°C
- Gas Saturated water 250 bar
- Gas 250 bar
- Power generation
- Gas 1 bar
 - water
Supercritical Water Reactor
Feedstocks

- Dry waste – thermal gasification optimum
- Wet waste – supercritical water optimum

Bulbs
Cabbage
Cereal residue
Distillers dried grain
Ethanol fermentation residue
Food waste, potato waste
Food packaging
Manure
Sawdust, wood
Straw
Sugarcane bagasse
Chemical Composition

- Cellulose
- Hemicellulose
- Proteins
- Lignin
 - waste product of paper pulping
 - difficult to process
 - reduces H_2 yield
Feedstocks

<table>
<thead>
<tr>
<th></th>
<th>Glucose</th>
<th>Trester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Sparqle, NL)</td>
<td>(Winegas project)</td>
</tr>
<tr>
<td></td>
<td>Mol%</td>
<td>Vol%</td>
</tr>
<tr>
<td>H₂</td>
<td>54</td>
<td>H₂</td>
</tr>
<tr>
<td>CH₄</td>
<td>3</td>
<td>CH₄</td>
</tr>
<tr>
<td>CO₂</td>
<td>34</td>
<td>CO₂</td>
</tr>
<tr>
<td>CO</td>
<td>3</td>
<td>CO</td>
</tr>
<tr>
<td>Cₓ</td>
<td>0</td>
<td>Cₓ</td>
</tr>
</tbody>
</table>

Penninger JML et al
EU Project CRAF-1999-70995
Gas Optimisation

- Hydrogen
 Favoured at higher temperature
 Water – gas shift

- Methane
 Lower temperature
 Ni Catalyst (Kruse, FZK)
Gas Use

• Gases are pre scrubbed by water

• No SOx, NOx in SCWO; (converted to corresponding acids)

• Claimed gases are “turbine suitable”

• At 250 bar, CO$_2$ sequestration easy
CHOREN Industries
Carbo-V Process

Biomass \rightarrow gas + tar + char

1. gas
2. pulverisation
3. syngas
4. compression
5. F-T synthesis

Synthetic diesel fuel

www.choren.com
Routes to Syngas

• Steam Reforming: $\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2$

• Partial Oxidation: $\text{CH}_4 + 3/2\text{O}_2 \rightarrow \text{CO} + 2\text{H}_2\text{O}$

• Water Gas Shift: $\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$
Fischer-Tropsch

• Step 1
 Production of syngas [CO + H2]

• Step 2
 Syngas to a broad range hydrocarbon stream
 \[CO + 2H_2 \rightarrow [-CH_2-] + H_2O \]
150,000 barrels/day

SASOL II and III
Who & Where?

SCW expertise:
- China, Japan
- US – PNW Labs / Hawaii
- EU – Austria, Germany, Holland
- Vienna Institute of Technology
- CHOREN industries
- Sparql
- Univ Twente
- UK
- SC Water at Nottingham, Birmingham
 [Hamley, Poliakoff] [Al-Duri]
- Pyrolysis expertise at Aston
 [Tony Bridgwater] www.aston-berg.com
Acknowledgements

• Professor Martyn Poliakoff, F.R.S.
• Dr. Eduardo Verdugo
• Dr. Thomas Ilkenhans

• Invista Performance Technologies
• National Non Food Crops Centre
• Beacon Energy
• Chematur A.G.