

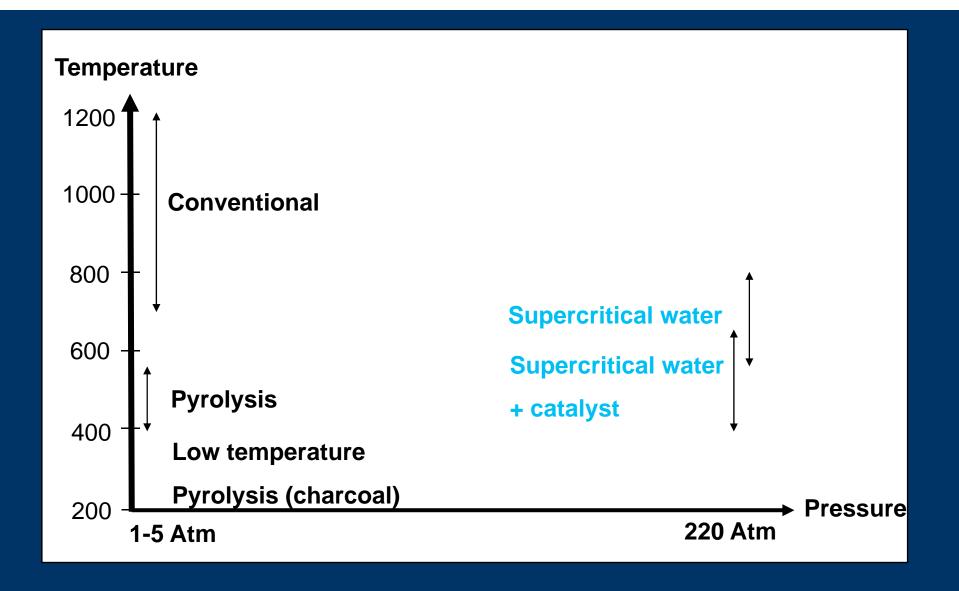
Supercritical Water Biomass Gasification: Fuel Gas from Waste

Dr. Paul Hamley
Clean Technology Group
School of Chemistry University of Nottingham
www.nottingham.ac.uk/supercritical

Menu

Waste Sources

- Gasification Technologies
- Properties of Supercritical Water (SCW)
- SCW Gasification Process and Potential


Waste Sources

- Animal waste
- Animal carcasses
- Domestic / Municipal
- Forestry
- Packaged food
- Vegetable

Gasification Technologies

Pyrolysis

• 400-550°C, 1-5 bar

Anerobic

Slow – charcoal

Fast – dark brown mobile liquid

Conventional Gasification

- 700 1200C
- Need to drive off water before gasification
- Water content can be ca. 90% by mass
- Inefficient for high water content materials
- Suited to dry materials (e.g. sawdust)
- Problems:
- Char (always at 1 bar), tar

Tar Avoidance Options

• >1000°C

Dolomite

Alkali metal oxides

- Catalyst
- Secondary air injection

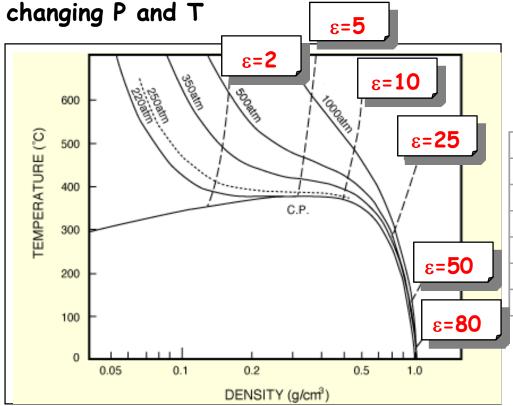
Char

- Result of polymerisation of fragments broken down by hydrolysis
- Builds up at low temperatures
- Can be burnt off at high T

Avoidance strategies

- Rapid heating zone
- Catalyst
- SCW

Properties of Water


- Covalent molecule
- Extensive hydrogen bonding
- Dissociation: Acid/Base
- Dielectric constant
- Unusual properties of ice

Dielectric constant

A significant change of the dielectric constant can be obtained by

Relative dielectric constant (E) of different solvents

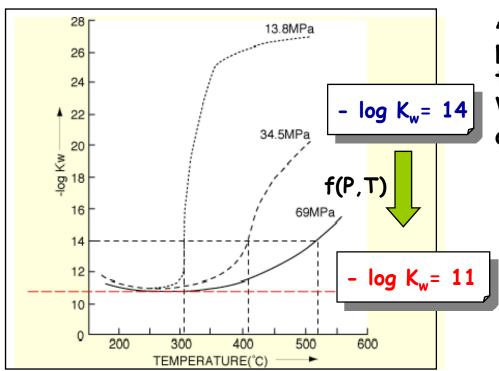
Solvent	3
Propane	1.6
Hexane	1.8
Carbon tetrachloride	2.2
Acetone	20.7
Ethanol	24.5
Methanol	32.6

Change of ϵ with P and T increase the dissolving power. At 300°C, the H_2O is similar to acetone: dissolving organic compounds and precipitating inorganic salts.

Supercritical Water

•T_c 374 °C; p_c 218 atm.

• H_2O , 374°C Hexane


ε 6 1.8

ρ 0.3 0.8

- Organics dissolve; salts precipitate
- •O₂ is miscible with H₂O above T_c

The ionic product (K_w)

As the dissociation proceeds, the nature of the water itself changes. Water becomes an acidic or alkaline catalyst.

Optimisation of acid/based-catalysed reaction by P and T

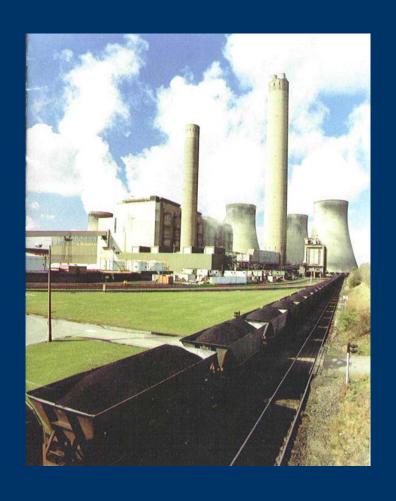
Kw depends significantly of the temperature and/or pressures

SCW Gasification

- SC Water miscible with nonpolar organic compounds
- Self dissociation high OH⁻
- Hydrolysis

- 600-800°C (no catalyst)
- 500-650°C (with metal catalyst)
- 220-250 bar gases produced at pressure

SCW Gasification


No need to drive off water

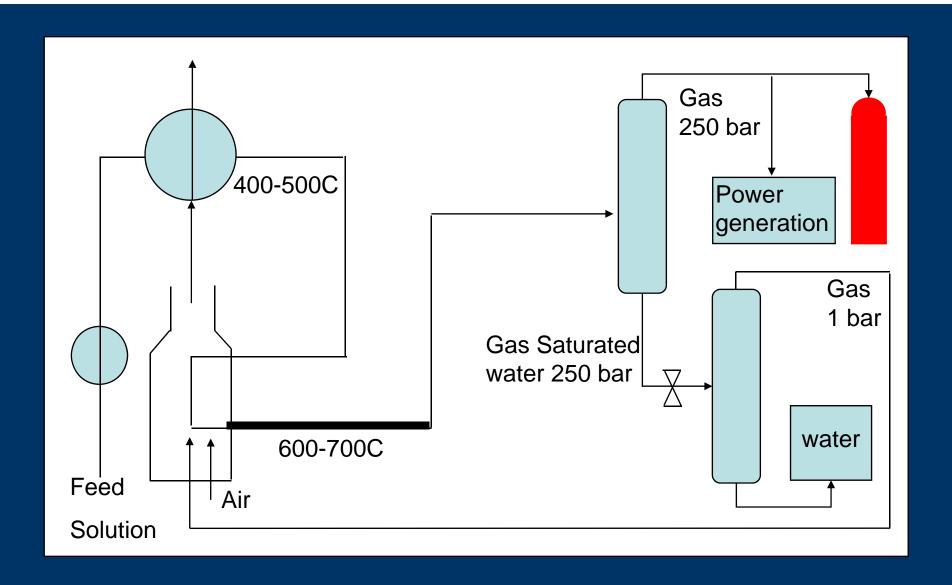
- Suitable for high moisture content materials
- Optimum 700°C, 3% aqueous feedstock 100% gasification acheivable

 Need energy source for preheating incoming feedstock slurry to ca. 400C

sc Water conditions are routinely in use

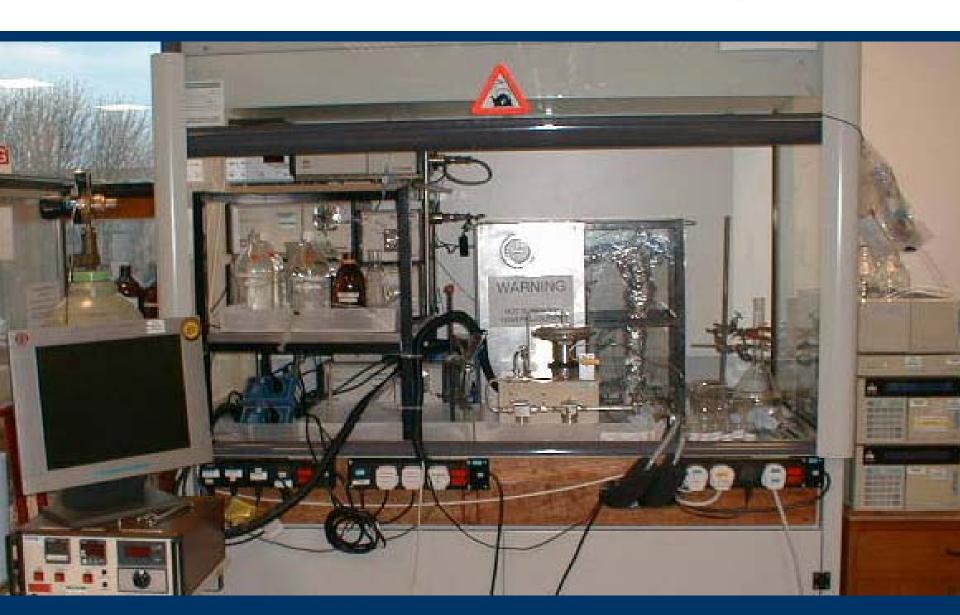
- Ratcliffe-on-Soar
 Power Station
- 4x 500MW
 Steam Turbines
- 165 bar
- 568°C

Heating Energy



Externally
 Burn portion of biomass to heat incoming slurry

Internally
 Inject O₂ in first stage,
 combust part of feed in SCW


Supercritical Water Gasification Process

Supercritical Water Reactor

Feedstocks

- Dry waste thermal gasification optimum
- Wet waste supercritical water optimum
 Yoshida et al; Biomass & Bioenergy 25 (2003) 257-272

Bulbs

Cabbage

Cereal residue

Distillers dried grain

Ethanol fermentation residue

Food waste, potato waste

Food packaging

Manure

Sawdust, wood

Straw

Sugarcane bagasse

Chemical Composition

- Cellulose
- Hemicellulose
- Proteins
- Lignin
- waste product of paper pulping
- difficult to process
- reduces H₂ yield

Feedstocks

Glucose

(Sparqle, NL) Mol%

- H₂ 54
- CH₄ 3
- CO₂ 34
- CO 3
- C_v 0

Penninger JML et al J Supercrit Fluids 16: 119-132 (1999)

Trester

(Winegas project) Vol%

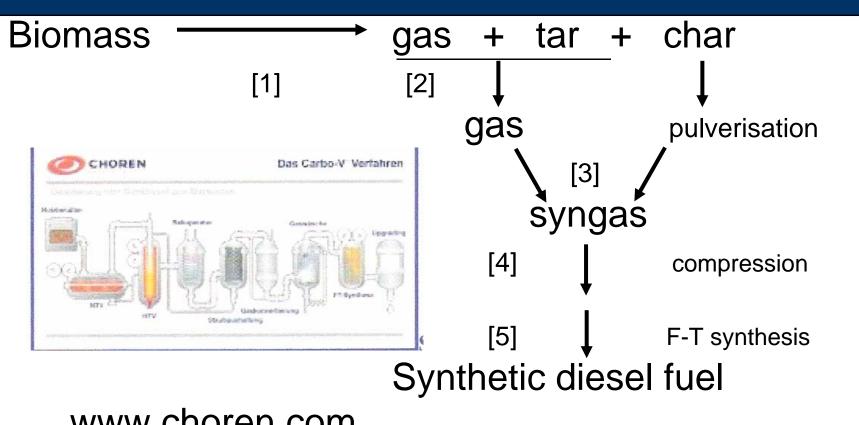
- H₂ 44
- CH₄ 25
- CO₂ 22
- CO 2
- C_x 8

EU Project CRAF-1999-70995

Gas Optimisation

Hydrogen
 Favoured at higher temperature
 Water – gas shift

Methane
 Lower temperature
 Ni Catalyst (Kruse, FZK)


Gas Use

- Gases are pre scrubbed by water
- No SOx, NOx in SCWO; (converted to corresponding acids)
- Claimed gases are "turbine suitable"
- At 250 bar, CO₂ sequestration easy

CHOREN Industries Carbo-V Process

www.choren.com

Routes to Syngas

Steam Reforming: CH₄ + H₂O -> CO + 3H₂

• Partial Oxidation: $CH_4 + 3/2O_2 -> CO + 2H_2O$

Water Gas Shift: CO + H₂O -> CO₂ + H₂

Fischer-Tropsch

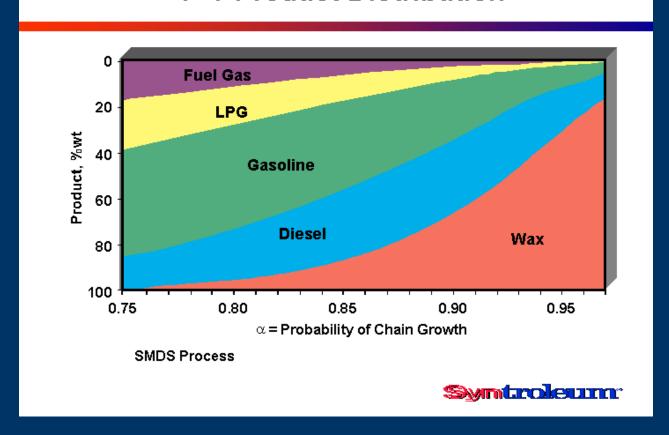
Step 1
 Production of syngas [CO + H2]


Step 2
 Syngas to a broad range hydrocarbon stream

$$CO + 2H_2 \rightarrow [-CH_2 -] + H_2 0$$

150,000 barrels/day

SASOL II and III



www.fischer-tropsch.org/

Who & Where?

SCW expertise:

- China, Japan
- US PNW Labs / Hawaii
- EU Austria, Germany, Holland
- Vienna Institute of Technology
- CHOREN industries
- Sparql
- Univ Twente

UK

- SC Water at Nottingham, Birmingham [Hamley, Poliakoff] [Al-Duri]
- Pyrolysis expertise at Aston
 [Tony Bridgwater] www.aston-berg.com

Acknowledgements

- Professor Martyn Poliakoff, F.R.S.
- Dr. Eduardo Verdugo
- Dr. Thomas Ilkenhans

- Invista Performance Technologies
- National Non Food Crops Centre
- Beacon Energy
- Chematur A.G.