Imperial College London

BCURA B73 Research Contract

"The Selection of Low Cost Sorbents & Process Conditions for Mercury Capture from Flue Gases"

Imperial College London Department of Chemical Engineering London SW7 2AZ

Prof D R Dugwell, Prof R Kandiyoti, Dr A George, Mr H R Seneviratne

Imperial College London

MERCURY EMISSIONS REGULATIONS

- Mercury is a cumulative poison causes kidney and brain damage
- USA Clean Air Mercury Rule (CAMR) cap & reduce mercury emissions from coal-fired power plants (2005)
 > 1st phase cap of 38 tpy effective in 2010
 - 2nd phase cap of 15 tpy effective in 2018

 Emission limits proposed by the US EPA (2005) – based on gross energy output

Bituminous units: 9.5 kg/TWh [had the highest limits]

- Canada Wide Standard
 - Bituminous units: 3 kg/TWh
- UK No specific regulations yet for coal-fired power plants, however mercury emissions from the plants will be monitored

POSSIBLE COST EFFECTIVE METHOD OF MERCURY CAPTURE

- Based around current emission control systems
- Possible method

inject sorbent before particulate control device

Imperial College London PRINCIPAL ACTIVITES

- Identification and sourcing of suitable sorbents
- Characterisation of promising sorbents
 > SEM
 > BET
 > TGA
- Hg retention capability
 Adsorption temperature
 flue gas composition [e.g. HCl and SO₂]
 Hg speciation
- Measurement of leaching stability of Hg from spent sorbent

SORBENTS TESTED

- Commercial sorbents
 ➢ Norit Darco Hg[™]
 ➢ Norit Darco Hg-LH[™]
- Scrap tyre rubber
 Tyre rubber charcoal
 Tyre rubber activated carbon –steam activation
 Tyre rubber activated carbon Bromine impregnation
- Sewage sludge
 - Sewage sludge charcoal
 - Sewage sludge AC bromine impregnation
- Coal fly ash UK power plants (8 ashes)

Imperial College

London

MAKING SORBENTS FROM SCRAP TYRE & SEWAGE SLUDGE

- Char from scrap tyre pyrolysis
 > Pyrolysis temperature = 700°C
- Activated Carbon from scrap tyre
 Activation temperature = 925°C
- Char from DEMAD sewage sludge
 > Pyrolysis temperature = 600°C

- Bromine impregnated activated carbon from scrap tyre rubber and sewage sludge
 - Pyrolysis temperature = 600°C
- Particle size between 38 75 μm

Imperial College London BET SURFACE AREA & MICROPORE VOLUME

Sorbent	BET surface area (m²/g)	Micropore volume (mm ³ /g)
Norit Darco Hg™	660	169
Norit Darco Hg-LH™	335	61
Fly ash	1 - 15	0.2 - 2
Tyre charcoal	76	1
Tyre AC -steam	249	67
Tyre AC -bromine	97	3
Sewage sludge charcoal	53	10
Sewage sludge AC -bromine	700	147

Imperial College London ASH AND ELEMENTAL ANALYSIS

Sorbent	Ash	С	Ν	0	Н	S	CI	Br
Norit Darco Hg™	10	77	0.6	4	0.2	0.4	0.03	<100 ppm
Norit Darco Hg-LH™	27	58	0.4	6	0.3	1.1	0.03	3.05
Fly ash D	92	7	0.2	<0.1	<0.05	0.3	0.02	<100 ppm
Tyre charcoal	13	83	0.3	<0.1	0.3	3	0.03	510 ppm
Tyre AC – steam	13	83	0.4	<0.1	0.1	3	0.01	NA ^a
Tyre AC – bromine	4	90	0.3	3.0	0.2	0.8	0.01	1.08
Sewage sludge charcoal	71	23	2.5	<0.1	0.7	1.0	0.06	0.01
Sewage sludge -bromine	32	47	4.6	7.8	0.9	1.9	0.01	2.09

Imperial College London SEM / EDX ANALYSIS OF SORBENTS

- Inorganic species in fly ash agglomerated into spherical globules
- Wurtzite (ZnS) in sorbents from scrap tyre rubber – not part of the carbon matrix
- Bromine presence on the impregnated PAC confirmed

Sewage sludge AC R3

Imperial College London

SIMULATED FLUE GAS

Harworth coal

Constituent	Concentration	Volume flow rate (at NTP) [ml/min]				
Hg ⁰	3.5 ppb _v	1.3x10 ⁻⁷				
O ₂	6%	2				
CO ₂	12%	5				
SO ₂	1800 ppm _v	7x10 ⁻²				
HCI	200 ppm _v	7x10 ⁻³				
H ₂ O	7%	2.5				
NO	490 ppm _v	2x10 ⁻²				
NO ₂	17 ppm _v	6x10 ⁻⁴				
N ₂	75%	28 mL/min				
Total	100%	37				

Imperial College London EXPERIMENTAL SCHEME [Gas scheme -6]

Imperial College London BENCH SCALE SORBENT TESTING SYSTEM

Note - sample mass = 20 mg

Imperial College London HG CAPTURE – INITIAL EXPOSURE TO NO_x

Imperial College London HG CAPTURE – INITIAL EXPOSURE TO HCL

Imperial College

London

CONCLUSIONS

- Brominated sorbents ~ 100% effective when gas scheme Exp. 1 is used.
 - ➤ Needed less than 5% the mass of Norit Darco Hg[™]
- Sorbents without Br impregnation (except the fly ash)
 > Efficiency increased with NOX or HCI
- Tests with Exp. 1: Physically adsorbed steam PAC Chemical bond – Tyre pyrolysis char
- Test with Exp. 5 Strong chemical bond probably due to HCI
- Hg capture on fly ash related to LOI
 LOI >17% needed to equal Br impregnated sorbents
- TCLP leaching test showed very little mercury is leached
 > Hg conc. in leachate < EPA safe limit for drinking water

- Norit Darco Hg[™] substitute
 >Steam activated PAC from scrap tyre rubber
- Norit Darco Hg-LH[™] substitute
 >Bromide impregnated PAC from scrap tyre rubber

Imperial College

RECOMMENDATIONS FOR FUTURE WORK

- Test with SO₃
 - Might consume active sites which would have adsorbed mercury
- Entrained flow reactor
 - Difficult to correlate bench scale fixed bed results with full-scale field tests
 - Entrained flow reactor results in USA have had better correlations with full-scale tests

Imperial College THANK YOU FOR LISTENING

Acknowledgment

I would like to express my sincere thanks to BCURA for funding this project and P S Analytical for providing the Mercury generator and helping in analysing the bromine impregnated sorbents.

Special thanks to the BCURA Project Officer, Dr D Fitzgerald, and also to Dr W. Quick and Dr S Weatherstone for their help and encouragement throughout the project

