

The University of

Nottingham

Mercury Oxidation by Fly Ash Constituents and Flue Gases and Its Optimization for the Development of Mercury Control Technologies

<u>Junru Li</u>, PhD student Mercedes Maroto-Valer, Project manager Colin E. Snape, Project manager

School of Chemical and Environmental Engineering University of Nottingham

Outline

The University of Nottingham

Background

- Mercury emissions
- Current control strategies
- Properties
- Aims and schedule
- Characterisation of fly ash samples
- Theoretical studies (modelling)
- Results and discussion
- Experimental set-up
- Summary
- Future work

Background

The University of

Nottingham

--- Mercury emissions

- Increasing concerns of mercury emissions due to its toxicity, methylmercury (CH₃Hg)
- 1997 US EPA report:^a
 - Approximately 158 tons of mercury emitted in the USA;
 30% of the total was from coal-fired power plants;
- Mercury control strategies
 - >USA: 21 and 70% reduction by 2010 and 2018, respectively; ^b
 - Europe: community strategy concerning mercury; ^c
 - Germany: the first European country regulating mercury emission standard from power plants (0.03mg/m3STP);^d

a US EPA (1997) Mercury study report to congress, volume I: executive summary

b US EPA (2005) Standards of Performance for New and Existing Stationary Sources: Electric Utility Steam Generating Units (Final role)

c Commission of the European Communities (2005) Communication from the commission to the council and the European Parliament: community strategy concerning mercury

d Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (FMENCNS) (2004) Thirteenth Ordinance on the Implementation of the Federal Immission Control Act (Ordinance on Large Combustion Plants and Gas Turbine Plants – 13.BImSchV)

The University of

Nottingham

--- Current control strategies

- Main forms of mercury leaving stacks:
 - Gaseous element form (Hg⁰)
 - Oxidised mercury (Hg²⁺)
 - Particulate bound mercury (Hg_p)
- Hg⁰ is difficult to be captured by existing air pollution control devices (APCDs), such as flue gas desulphurisation (FGD) and electrostatic precipitator (ESP) rather than Hg²⁺

The University of

Nottingham

--- Property comparisons

Property	Elemental mercury, Hg ^o	Oxidised mercury, Hg ²⁺
Reactivity	Low	High
Volatility	High	Low
Solubility	Insoluble	High soluble

- It is noted that oxidised mercury is the most suitable form to be captured by existing APCDs for reducing mercury emissions.
- Detailed studies on mercury speciation along the flue gas path are extremely necessary.

- Understanding the mechanisms of mercury oxidation along the flue gas path;
- Optimization of mercury oxidation for the development of mercury control technologies.

Project schedule

The University of

Nottingham

		k- ^{Yea}	r 1 _>	<- Yea	r2>	k- ^{Yea}	ar3 ->
		Oct. 2006	Apr. 2007	Oct.2007 ~	Apr. 2008 ~	Oct.2008	Apr. 2009 ~
Task	Description	Mar. 2007 (1st period)	Sept. 2007 (2nd period)	Mar.2008 (3rd period)	Sept. 2008 (4th period)	Mar.2009 (5th period)	Sept. 2009 (6th period)
0	Literature review						
1	Selection and characterization of fly ashes						
2	Impact of fly ashes on mercury oxidation and capture retention experiments					r:_L_L_l r-r-1-1\	
2.1	Theoretical modelling of the gaseous mercury oxidised by flue gases						
2.1.1	Validation of the methods and basis sets						
2.1.2	Studies of mercury oxidation by flue gases (HCl, Cl ₂ , NO _x , SO ₂ , O ₂ and H ₂ O)						
2.2	Theoretical modelling of the gaseous mercury oxidised by fly ash constituents					ГI r-г-т-т-т-	
3	Validation of mercury chemistry for the development of additives and sorbents						

In progress task or subtask

Completed task or subtask

- [[]]] Expected progress
- △ Milestone (Ending point)

Experimental work

The University of

Nottingham

--- Characterisation of fly ash samples

- Carbon content:
 - > 3B2 series: 7.44-42.11%;
 - DD1: 6.8% and DD2: 8.4%;
- Remaining elements (H, N): very low concentrations;
- Particle size distribution:
 - Single model: 3B2/1
 - Bimodal model: 3B2/2, 3B2/3, 3B2/4, DD1 and DD2;

Homogeneous reactions:

> Taking place between gaseous mercury (Hg⁰) and flue gas components, e.g. HCl and SO₂.

The University of

Nottingham

Heterogeneous reactions:

Gaseous mercury oxidised by solid oxides present in fly ash constituents, e.g. CaO. Mercury speciation studies

--- Mercury chlorination (homogeneous)

No.	Reaction
R1	$Hg + Cl + M \leftrightarrow HgCl + M$
R2	$Hg + Cl_2 \leftrightarrow HgCl + Cl$
R3	$Hg + HCl \leftrightarrow HgCl + H$
R4	$HgCl + Cl_2 \leftrightarrow HgCl_2 + Cl$
R5	$HgCl + Cl \leftrightarrow HgCl_2$
R6	$HgCl + HCl \leftrightarrow HgCl_2 + H$
R7	$Hg + Cl_2 \leftrightarrow HgCl_2$

Source: a. Niksa S., Helble J. J. and Fujiwara N. (2001) Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems, *Environmental Science & Technology*, **35**: p3701-3706; b. Widmer C. N., West J. and Cole A. J. (2000) Thermochemical study of mercury oxidation in utility boiler flue gases, *the 93rd Air & Waste Management Association (A&WMA) Annual Conference and Exhibition*, Salt Lake City, Utah

Modeling profile

The University of Nottingham

- Software: the latest Gaussian program (G03W)
- Relevant species:

Hg, HgCl, HgCl₂, H, HCl, Cl and Cl₂

- Basis sets for Hg, H and Cl atoms:
 - Hg: SDD, LANL2DZ and 19 basis sets provided by EMSL database (http://bse.pnl.gov/bse/portal), 21 basis sets in total.
 - H and CI: SDD, LANL2DZ and the largest Pople style basis set, 6-311++G(3df,3pd), 3 basis sets in total.
- Ab initio methods:

HF, B3LYP, MPn (MP2, MP3 and MP4SDQ), CC (CCD and CCSD), CI (CID and CISD) and QCISD, **10** methods in total.

Validation of method and The University of Nottingham basis set Scenario 1 **Geometry Optimization** Hg, H and CI: SDD & (Preliminary determination) LANL2DZ basis sets. Scenario 2 Hg: 19 basis sets provided by EMSL Second determination H & Cl: 6-311++G(3df,3pd) Comparison between theoretical and experimental data in terms of reaction heats (ΔH^{298K}) for the proposed reactions.

Determination Matrix

No.	Basis set\method	HF	B3LYP	MP2	MP3	MP4SDQ	CCD	CCSD	CID	CISD	QCISD
1	SDD	C		rio '	1 ()		-)				
2	LANL2DZ	5	Lena	10.	L (Z		>/				
3	1992 Stevens										
4	Ahlrichs Coulomb Fitting										
5	aug-cc-pV5Z-PP										
6	aug-cc-pVDZ-PP										
7	aug-cc-pVQZ-PP										
8	aug-cc-pVTZ-PP										
9	cc-pV5Z-PP										
10	cc-pVDZ-PP										
11	cc-pVQZ-PP										
12	cc-pVTZ-PP	Sc	enar	rio 2	(19)	90 run	S)				
13	cc-pwCV5Z-PP		H.								
14	cc-pwCVDZ-PP										
15	cc-pwCVQZ-PP		. 1								
16	cc-pwCVTZ-PP	11	11								
17	CRENBL	11									
18	CRENBS										
19	Stuttgart RLC										
20	Stuttgart RSC 1997										
21	WTBS										

* Ref: Foresman B. J. and Frisch Æ. (1996) Exploring Chemistry with Electronic Structure Methods, 2nd Ed., Gaussian Inc., Pittsburgh, PA, p118

The University of Nottingham

Determination Matrix

No.	Basis set\method	HF	B3LYP	MP2	MP3	MP4SDQ	CCD	CCSD	CID	CISD	QCISD
1	SDD										
2	LANL2DZ										
3	1992 Stevens										
4	Ahlrichs Coulomb Fitting										
5	aug-cc-pV5Z-PP										
6	aug-cc-pVDZ-PP										
7	aug-cc-pVQZ-PP										
8	aug-cc-pVTZ-PP										
9	cc-pV5Z-PP	2									
10	cc-pVDZ-PP										
11	cc-pVQZ-PP	T			5						
12	cc-pVTZ-PP		Y								
13	cc-pwCV5Z-PP										
14	cc-pwCVDZ-PP		. //								
15	cc-pwCVQZ-PP	//	11								
16	cc-pwCVTZ-PP	/									
17	CRENBL										
18	CRENBS	11									
19	Stuttgart RLC										
20	Stuttgart RSC 1997										
21	WTBS										

Determination Matrix

No.	Basis set\method	HF	B3LYP	MP2	MP3	MP4SDQ	CCD	CCSD	CID	CISD	QCISD
1	SDD										
2	LANL2DZ										
3	1992 Stevens					\vee		\mathbf{V}		\vee	\mathbf{V}
4	Ahlrichs Coulomb Fitting										
5	aug-cc-pV5Z-PP					,					
6	aug-cc-pVDZ-PP							\mathbf{V}		\mathbf{V}	\mathbf{V}
7	aug-cc-pVQZ-PP										
8	aug-cc-pVTZ-PP										
9	cc-pV5Z-PP	1									
10	cc-pVDZ-PP					20	D CC	ombi	nat	tion	S
11	cc-pVQZ-PP	T			5						
12	cc-pVTZ-PP		L			\vee		\mathbf{V}		\mathbf{V}	\mathbf{V}
13	cc-pwCV5Z-PP					,					
14	cc-pwCVDZ-PP		. /			\vee		\checkmark		\checkmark	\mathbf{V}
15	cc-pwCVQZ-PP	//									
16	cc-pwCVTZ-PP					/				/	
17	CRENBL					V		\mathbf{V}		\mathbf{V}	\mathbf{V}
18	CRENBS										
19	Stuttgart RLC										
20	Stuttgart RSC 1997										
21	WTBS										

The University of

Nottingham

-- Calculated results

Comparison of theoretical and experimental ΔH_{rxn}^{298K} (kJ/mol) at the 1992 Steven's basis set

No	Poaction		Method					
NO.	Reaction	QCISD	MP4SDQ	CCSD	CISD	experiment		
R1	Hg+Cl+M>HgCl+M	-110.98	-110.76	-111.06	-65.92	-104.23		
R2	Hg+Cl ₂ >HgCl+Cl	94.52	96.29	94.09	67.17	138.37		
R3	Hg+HCl>HgCl+H	311.05	-	310.98	344.82	327.38		
R4	HgCl+Cl ₂ >HgCl ₂ +Cl	-123.22	-125.13	-123.40	-93.41	-103.44		
R5	HgCl+Cl>HgCl ₂	-328.72	-332.17	-328.56	-226.51	-346.04		
R6	HgCl+HCl>HgCl ₂ +H	93.31	-	93.48	184.24	85.57		
R7	Hg+Cl ₂ >HgCl ₂	-234.21	-235.89	-234.46	-159.34	-207.67		
Average absolute error		19.76		19.95	57.64			

-: not determined

The University of

Nottingham

-- Calculated results

Comparison of theoretical and experimental ΔH_{rxn}^{298K} (kJ/mol) at the aug-cc-pVDZ-PP basis set

No	Deaction		NIST*			
NO.	Reaction	QCISD	MP4SDQ	CCSD	CISD	experiment
R1	Hg+Cl+M>HgCl+M	-78.68	-72.78	-77.73	16.99	-104.23
R2	Hg+Cl ₂ >HgCl+Cl	126.82	134.27	127.42	150.09	138.37
R3	Hg+HCl>HgCl+H	343.36	-	344.31	427.74	327.38
R4	HgCl+Cl ₂ >HgCl ₂ +Cl	-115.13	-119.83	-115.29	-50.75	-103.44
R5	HgCl+Cl>HgCl ₂	-320.63	-326.88	-320.44	-183.85	-346.04
R6	HgCl+HCl>HgCl ₂ +H	101.41	-	101.60	226.90	85.57
R7	Hg+Cl ₂ >HgCl ₂	-193.81	-192.61	-193.02	-33.76	-207.67
Average absolute error		17.12	-	17.50	109.06	

-: not determined

The University of

Nottingham

-- Calculated results

Comparison of theoretical and experimental ΔH_{rxn}^{298K} (kJ/mol) at the cc-pVTZ-PP basis set

No	Deaction			NIST*		
NO.	Reaction	QCISD	MP4SDQ	CCSD	CISD	experiment
R1	Hg+Cl+M>HgCl+M	-76.20	-70.40	-74.80	38.38	-104.23
R2	Hg+Cl ₂ >HgCl+Cl	129.30	136.64	130.35	171.48	138.37
R3	Hg+HCl>HgCl+H	345.83	-	347.24	449.13	327.38
R4	HgCl+Cl ₂ >HgCl ₂ +Cl	-112.68	-117.22	-112.89	-32.19	-103.44
R5	HgCl+Cl>HgCl ₂	-318.18	-324.26	-318.04	-165.29	-346.04
R6	HgCl+HCl>HgCl ₂ +H	103.86	-	104.00	245.45	85.57
R7	Hg+Cl ₂ >HgCl ₂	-188.88	-187.62	-187.69	6.19	-207.67
Average absolute error		18.53	-	19.02	131.89	

-: not determined

The University of

Nottingham

-- Calculated results

Comparison of theoretical and experimental ΔH_{rxn}^{298K} (kJ/mol) at the cc-pwCVDZ-PP basis set

Poaction	Met	Poaction	NIST*		
Reaction	QCISD MP4SDQ	Reaction	CCSD	CISD	experiment
lg+Cl+M>Hg	84.00 -79.50	Hg+Cl+M>HgCl+M	-82.81	16.49	-104.23
Hg+Cl ₂ >HgC	21.50 127.54	Hg+Cl ₂ >HgCl+Cl	122.35	149.58	138.37
Hg+HCl>Hg	38.03 -	Hg+HCl>HgCl+H	339.23	427.23	327.38
lgCl+Cl ₂ >Hg	L12.16 -115.75	HgCl+Cl ₂ >HgCl ₂ +Cl	-112.22	-41.81	-103.44
HgCl+Cl>H	317.66 -322.80	HgCl+Cl>HgCl ₂	-317.37	-174.91	-346.04
lgCl+HCl>Hg	04.37 -	HgCl+HCl>HgCl ₂ +H	104.67	235.84	85.57
Hg+Cl ₂ >Hg	L96.16 -195.25	Hg+Cl ₂ >HgCl ₂	-195.03	-25.32	-207.67
Average absolute error		16.93	113.88		
dg+Cl+M>Hg $Hg+Cl_2>HgC$ Hg+HCl>HgC $dgCl+Cl_2>HgC$ HgCl+Cl>HgC dgCl+HCl>HgC $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$ $Hg+Cl_2>HgC$	84.00-79.5021.50127.5438.03-12.16-115.7517.66-322.8004.37-196.16-195.2516.45-	$Hg+Cl+M>HgCl+M$ $Hg+Cl_{2}>HgCl+Cl$ $Hg+HCl>HgCl+H$ $HgCl+Cl_{2}>HgCl_{2}+Cl$ $HgCl+Cl>HgCl_{2}$ $HgCl+HCl>HgCl_{2}+H$ $Hg+Cl_{2}>HgCl_{2}$ erage absolute error	-82.81 122.35 339.23 -112.22 -317.37 104.67 -195.03 16.93	16.49 149.58 427.23 -41.81 -174.91 235.84 -25.32 113.88	-104.2 138.3 327.3 -103.4 -346.0 85.5 -207.0

-: not determined

The University of

Nottingham

-- Calculated results

Comparison of theoretical and experimental ΔH_{rxn}^{298K} (kJ/mol) at the CRENBL basis set

No	Deaction		NIST*			
NO.	Reaction	QCISD	MP4SDQ	CCSD	CISD	experiment
R1	Hg+Cl+M>HgCl+M	-97.27	-95.84	-97.06	-43.74	-104.23
R2	Hg+Cl ₂ >HgCl+Cl	108.24	111.21	108.09	89.36	138.37
R3	Hg+HCl>HgCl+H	324.77	-	324.98	367.01	327.38
R4	HgCl+Cl ₂ >HgCl ₂ +Cl	-121.42	-116.35	-121.45	-86.11	-103.44
R5	HgCl+Cl>HgCl ₂	-326.92	-323.40	-326.61	-219.21	-346.04
R6	HgCl+HCl>HgCl ₂ +H	95.11	-	95.43	191.54	85.57
R7	Hg+Cl ₂ >HgCl ₂	-218.69	-212.19	-218.51	-129.85	-207.67
Average absolute error		13.91	- 11	14.00	68.15	

-: not determined

The University of

Nottingham

-- Calculated results

Comparison of theoretical and experimental ΔH_{rxn}^{298K} (kJ/mol) in terms of average absolute error

No.	Basis set	Method						
NO.	Dasis set	QCISD	MP4SDQ	CCSD	CISD			
3	1992 Steven's	19.76	-	19.95	57.64			
6	aug-cc-pVDZ-PP	17.12	-	17.50	109.06			
12	cc-pVTZ-PP	18.53	-	19.02	131.89			
14	cc-pwCVDZ-PP	16.45	-	16.93	113.88			
17	CRENBL	13.91	-	(14.00)	68.15			

-: not determined

Determination Matrix

No.	Basis set\method	HF	B3LYP	MP2	MP3	MP4SDQ	CCD	CCSD	CID	CISD	QCISD
1	SDD										
2	LANL2DZ										
3	1992 Stevens							\checkmark		$\overline{\mathbf{v}}$	$\overline{\mathbf{V}}$
4	Ahlrichs Coulomb Fitting										
5	aug-cc-pV5Z-PP					1		/			
6	aug-cc-pVDZ-PP					\vee		\checkmark		\mathbf{V}	\mathbf{V}
7	aug-cc-pVQZ-PP										
8	aug-cc-pVTZ-PP										
9	cc-pV5Z-PP										
10	cc-pVDZ-PP					20) cc	ombi	nat	ion	S
11	cc-pVQZ-PP	R			5					,	,
12	cc-pVTZ-PP		1			\vee		\mathbf{V}		\vee	\vee
13	cc-pwCV5Z-PP									,	
14	cc-pwCVDZ-PP		1			\checkmark		\mathbf{V}		\vee	\mathbf{V}
15	cc-pwCVQZ-PP	11									
16	cc-pwCVTZ-PP	///								/	
17	CRENBL	60				V		\mathbf{V}		\mathbf{V}	\mathbf{V}
18	CRENBS	11	1								
19	Stuttgart RLC										
20	Stuttgart RSC 1997										
21	WTBS										

Determination Matrix

The University of Nottingham

QCISD/1992, QCISD/CRENBL and CCSD/CRENBL

Mercury speciation studies

--- Mercury chlorination (homogeneous)

No.	Reaction
R1	$Hg + Cl + M \leftrightarrow HgCl + M$
R2	$Hg + Cl_2 \leftrightarrow HgCl + Cl$
R3	$Hg + HCl \leftrightarrow HgCl + H$
R4	$HgCl + Cl_2 \leftrightarrow HgCl_2 + Cl$
R5	$HgCl + Cl \leftrightarrow HgCl_2$
R6	$HgCl + HCl \leftrightarrow HgCl_2 + H$
R7	$Hg + Cl_2 \leftrightarrow HgCl_2$

Source: a. Niksa S., Helble J. J. and Fujiwara N. (2001) Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems, *Environmental Science & Technology*, **35**: p3701-3706; b. Widmer C. N., West J. and Cole A. J. (2000) Thermochemical study of mercury oxidation in utility boiler flue gases, *the 93rd Air & Waste Management Association (A&WMA) Annual Conference and Exhibition*, Salt Lake City, Utah

The University of Nottingham

--- Predicted geometries

Unit: bond length, Å; bond angle, degree.

T=298K

	QCISD/1992	QCISD/CRENBL	CCSD/CRENBL	Expt.
HgCl	2.412	2.394	2.3952	2.42 ª
HCI	1.274	1.274	1.2738	1.2746 ^b
HgCl ₂	2.3003, ∠180°	2.2777, ∠180°	2.2781, ∠180°	2.252 ^b , ∠180°
TS (Hg-Cl- ClH)	Cl-Hg: 2.3241; Hg-Cl: 2.3763 Cl-H: 1.781; ∠ClHgCl: 180° ∠HgClH: 180°	Cl-Hg: 2.3025; Hg-Cl: 2.3631 Cl-H: 1.7689; ∠ClHgCl: 180° ∠HgClH: 180°	Cl-Hg: 2.3029; Hg-Cl: 2.3636 Cl-H: 1.7685; ∠ClHgCl: 180° ∠HgClH: 180°	Not available

^a Ref: Bhartiya B. J., Behere H. S. and Rao L. P. M. (1990) Dissociation energies of HgCl, HgBr and HgI from potential energy curves, *Journal of quantitative spectroscopy & radiative transfer*, **43**(1): p95-98;
 ^b Ref: Lide R. D. ed. (2007) Bond Lengths and Angles in Gas-phase Molecules, in CRC Handbook of Chemistry and Physics, Internet Version, 87th Edition, Taylor and Francis, Boca Raton, FL

 $HgCl+HCl \leftarrow \rightarrow HgCl_2+H$

The University of Nottingham

--- Predicted thermodynamic and kinetic

T=298K	CISD/1992 QCI		CCSD/CRENBL	Expt.		
Frequencies, cm ⁻¹						
HgCl	289.0268	285.5	285.0	292.61 ^a		
HCI	3024.7	3024.7	3026.1	2989.74 ^a		
HgCl ₂	97.3, 97.3, 338.2,392.1	93.7, 93.7, 347.4, 397.1	94.0, 94.0, 347.3, 397.0	75, 75, 363, 413 ^b		
TS (Hg-Cl- ClH)	77.4, 77.4, 214.6, 214.6, 330.4, 360.6, - 1038.5	73.6, 73.6, 198.6, 198.6, 339.8, 364.7, -1057.6	73.8, 73.8, 199.1, 199.1, 339.6, 364.6, -1062.9	Not available		
Reaction heat ΔH_{rxn} , kJ/mol						
Forward	93.163	94.949	95.283	85.57 ^d		
Activation energy, kJ/mol						
Forward	121.024	125.901	126.497	Not		
Reverse	27.864	30.957	31.217	available		

^a Ref: Herzberg G. (1939) Molecular spectra and molecular structure I. Spectra of diatomic molecules, D. Van Nostrand Company, New York; ^b Ref: Herzberg G. (1966) Molecular spectra and molecular structure III Electronic spectra and electronic structure of polyatomic

molecules, D. Van Nostrand Company, Inc. New York; c Ref: National Institute of Standards and Technology (NIST)

--- Comparison of k

T-209V	Mathad/basis sat	Rate constant, cm ³ /mol s			
1=290K	Methody Dasis Set	Forward	Reverse		
	QCISD/1992	4.561×10 ⁻¹¹	3.940×10 ⁸		
This work	QCISD/CRENBL	7.434×10 ⁻¹²	1.275×10^{8}		
	CCSD/CRENBL	5.798×10 ⁻¹²	1.145×10^{8}		
Wilcox and Blowers	QCISD/1992	3.919×10 ⁻¹²	-		
(2004)	QCISD/1997	8.864×10 ⁻¹⁰	-		
Niksa et al. (2001)	-	7.154×10 ⁻⁵	-		
Widmer et al. (2000)	-	8.657×10-2	-		

$HgCI+HCI \leftarrow \rightarrow HgCI_2+H \qquad free University of Nottingham$

- --- Theoretical rate constant (K=25-1200°C)
- QCISD/1992: $k_{forward} = 5.273 \times 10^{11} e^{\frac{-15089}{T}}$ and $k_{reverse} = 1.271 \times 10^{14} e^{\frac{-3651.7}{T}}$ • QCISD/CRENBL: $k_{forward} = 6.447 \times 10^{11} e^{\frac{-15684}{T}}$ and $k_{reverse} = 1.516 \times 10^{14} e^{\frac{-4035.2}{T}}$ • CCSD/CRENBL: $k_{forward} = 6.363 \times 10^{11} e^{\frac{-15753}{T}}$ and $k_{reverse} = 1.506 \times 10^{14} e^{\frac{-4064.8}{T}}$

Arrhenius equation: $k = A \exp(-E_a / RT)$

-- Temperature profile

--- Comparison of models

Experimental set up

A Schematic diagram for mercury speciation studies

Experimental set-up

The University of Nottingham

Additional equipment

Experimental set-up

The University of

Nottingham

Fingerprints for mercury compounds

Summary

The University of Nottingham

- Six fly ash samples were characterised by ultimate and proximate analyses, LOI value and particle size distribution.
- The validation of method and basis set was completed and three combinations were considered to be accurate for this project.
- One mercury chlorination reaction, HgCl+HCl←→HgCl₂+H, was completed using the three chosen combination.
- The reverse reaction is favoured in the low temperature range (25-427°C).
- An experimental set-up is being commissioned

Future work

The University of Nottingham

- Complete the theoretical study on homogeneous reactions taking place between gaseous elemental mercury and flue gas components, including mercury chlorination (Task 2.1).
- Complete commission of experimental set up and determine rate constants to validate theoretical model
- Start modelling in heterogeneous reactions taking place gaseous elemental mercury and fly ashes (Task 2.2).
- Evaluate the effects of individual material on mercury oxidation (Task 3)

Acknowledgements

The University of Nottingham

The British Coal Utilisation Research Association (Project number B-83) and the UK Department of Business Enterprise and Regualtory Reform (BERR) for a grant in aid of this research, but the views expressed are those of the author, and not necessarily those of BCURA or BERR.

The University of Nottingham

Thank You & Question?