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• Advanced monitoring of combustion flames plays an important role in 
the in-depth understanding of energy conversion and pollutant 
formation processes and subsequent combustion optimisation. 

• Current practice of flame monitoring is limited to indicate whether the 
flame is present or absent for safety purpose only. 

Introduction

Flames (Source: DTI)

Conventional 
flame detector
(Source: DURAG)

Coal-fired boiler 
(Source: DTI)
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Introduction

• Advanced techniques are required to provide reliable, non-intrusive 
and continuous monitoring of combustion flames.

• Substantial research has been carried out at the University of Kent to 
develop a vision based technology for 2D/3D monitoring and 
characterisation of combustion flames. 

• This presentation presents an overview of recent developments in the 
2D and 3D flame imaging techniques. 
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Typical coal-fired flames
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(Flame images taken on a 1MWth CTF, E.ON, UK)  
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Flame
assessment Emissions

Fuel/air inputs

Other data

Recommendation to 
Combustion optimisation

Computational 
modelling

Flame characteristics 

Flame 
images

• Size/shape, Ignition point  

• Luminous intensity, Uniformity

• Temperature 
• Oscillation frequency 
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Flame characterisation through 
2D imaging

Video signals

Image acquisition 
& processing unit

Water JacketCooling water/air

Optical probe
Camera housing

Remote computer

Flame 



2D flame imaging – industrial trials
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3MWth coal-fired CTF, Cerchar, France

0.5MWth CTF, RWE npower

Cooli
ng 
syste
m 

Combustion 
Chamber

Burner
90 MWth  CTF, Doosan Babcock 

1MWth CTF, E.ON UK



Determination of flame geometric 
and luminous parameters

- Ignition point: Ip
- Spreading angle: αs

- Brightness: Bf

- Non- uniformity: Nuf

• Geometric and luminous parameters

- Edge detection 
- Pattern recognition 
- etc …

• Techniques used
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Example results
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• Flame images and the ignition point for variable 
furnace load. 
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-- Tests on a 1MWth CTF, EON (UK)

0.8MW 0.9MW 1.1MW1.0MW
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• The two-colour method- The temperature is determined from flame 
radiation intensities at two wavelengths based on the Planck’s radiation law. 
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Determination of flame temperature

• Spectral radiance of particles 

• Spectral radiance of a blackbody 

Spectral radiance of a blackbody 
for selected temperatures

Emissivity 
of particles

(Wien’s radiation law)

• The two-colour method 

T=f(λ1, λ2, M1, M2)

TCeCTM λ
λ λ
ελ 2
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Flame
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Ocular Imaging 
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λ2
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Temp (°C)
>1609
>1588
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Temperature distribution

T=f(λ1, λ2, G1, G2)

Image at λ2

Image at λ1

• Sensing arrangement 

Determination of flame temperature
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1.1MWth

Temp (°C)
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• Temperature profiles of a coal-fired flame for 
variable furnace load.

Example results 
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-- Tests on a 1MWth CTF, E.ON (UK)
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• Comparison of flame temperature profiles obtained by the 
imaging system and by a thermocouple. 

Flame image Temperature from imaging system
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-- Tests on a 3MWth CTF (France)
Example results 



Determination of oscillation frequency

• Oscillatory (flickering) characteristic of a flame is reflected by the dynamic 
alternating components (AC) superimposed on the steady state (DC) or 
‘brightness’ level.

• The oscillation signal is reconstructed from the luminous intensity of pixels 
within flame images. 

• Quantified frequency is the weighted average of the power spectra over the 
whole measuring range, i.e., 0 -180Hz.

14

0.5

1

1.5

2

20 40 60 80 100 120 140 160 1800

Frequency (Hz)
Po

w
er

 (X
10

7 )

0 0.5 1 1.5 2 2.5- 5

0

5

Time (Sec)

FFT
Flame

Burner

MiddleRoot

Camera 



• Flame oscillation frequency for variable furnace load

0

5

10

15

20

25

Furnace load (MW)

Fl
ic

ke
r (

H
z)

1.10.9 1.00.8

Root
Middle

Example results 

0.8MWth

1.0MWth

Variation of the 
oscillation frequency

15

-- Tests on a 1MWth CTF, EON (UK)



3D flame monitoring and 
characterisation through imaging
A flame is a 3D flow field. To fully reveal the dynamic nature of the 
flame, 3D monitoring and characterisation techniques are required. 
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Flame

Camera

• Contour extraction

• Mesh generation

• Pseudo-colouring
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3D flame geometric model
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Camera

Flame 

3D tomographic reconstruction 
of the flame luminosity 

Mirrors
/lenses

Reconstructed
grey-scale cross-sections

Reconstruction
Algorithm

• Filtered Back Projection 
• Algebraic Reconstruction 
Technique



Gas flame images                Longitudinal-section reconstruction   

Cross-section reconstruction

3D tomographic reconstruction 
of the flame luminosity 
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Temperature 
calculation

(Two-colour method)

Image 
acquisition & 
digitisation

Image 1 
(for λ1)

Image 2
(for λ2)

Grey level 
reconstruction

Grey level 
reconstruction

Data presentation

Flame

3D tomographic reconstruction 
of the flame temperature
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3D tomographic reconstruction 
of the flame temperature
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• 粉煤火焰三维灰度重构

A coal flame image                Cross-section reconstruction
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3D tomographic reconstruction 
of a coal flame



Concluding remarks

• Digital imaging provides a viable approach to on-line 2D/3D 
monitoring and characterisation of combustion flames.

• Prototype systems have been evaluated on laboratory- and industrial-
scale combustion test facilities. The test results have proven their 
effectiveness and operability. 

• Work is being undertaken to,
study flame stability and burner condition monitoring under 
biomass/coal co-firing and oxyfuel combustion conditions (EPSRC 
projects)
study the internal structure of a flame under a wide range of 
conditions (EPSRC projects)
Scale up the 2D prototype systems for the installation on full-scale 
coal fired boilers (BCURA Project B95). 

• The flame imaging techniques are being extended to other 
applications such as gas turbine combustors and blast furnaces. 
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• The imaging system is 
calibrated using a standard 
temperature source - black-
body furnaces at NPL.
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• Images of the blackbody furnace
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System calibration
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