OXYFUEL COMBUSTION FOR COAL-FIRED POWER
GENERATION WITH CO, CAPTURE-

OPPORTUNITIES AND CHALLENGES

CCS Research Group, The University of Leeds

Penny Edge (PhD) Kris Larsen(PhD) Maryam Gharebaghi (PhD)
Richard Porter (RF) Rachael Porter (PhD) Mohamed Degereji (PhD)

Sreenivasa Gubba (RF)

K. Hughes, M. Pourkashanian, L. Ma, B. Nimo, and A. Williams,

CFD Support: A. Burns and D. Ingham




School of Process, Environmental

and Materials Engineering :
FACULTY OF ENGINEERING UNIVERSITY OF LEEDS

TIMES N 1inE o

W AUCE COMMENT  BUSINESS | MONEY | SPORT | LIFE & STYLE | TRAVEL | DI News | Sport ‘ Commen‘t| Culhue|Business|Money
A-Z

UK NEWS | WORLD NEWS | POLITICS | ENVIRONMENT | WEATHER | TECH & WEHE O Ui o) & i b (o) SO IO IR nER

RSS Fossil fuels

Where am I? » Home » News » UK News » Science News Carbon Capture and Storage (CCS) B wWebfeed

From The Times
September 9, 2008

How carbon capture and storage

(CCS) could make coal the fuel of the -..-
future | . '

Life & style | Travel| E

- ¢

® HAVE YOUR SAY How carbon is captured and stored
. . . Explainer: The three main techniques for
| read all 8 coments ,you all had good ideas the 02 idea preventing carbon dioxide from coalfired power ~ Engineers set to convert carbon

was good _less babies is good to_clean coal is good_now stations contributing to global warming dioxide into solid rock
lets do something about it_now that we got rid of the planet
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Why the Interest in CCS?

« The UNFCCC goal of stabilizing atmospheric GHG
concentrations will require significant reductions in future
CO, emissions

 Possible to achieve material reductions in CO2 emissions &
provide a bridge to a lower carbon future

e CCS could be part of a portfolio of options to mitigate global
climate change

e Can provide a win ~ win for both energy security and
environment

e CCS has potential to reduce overall costs of mitigation
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Impact of CO, Cost (LEC)
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CFD Modeling can provide reasonable
predictions.

Current challenges include:

Radiation predictions — especially in oxy-fuel
combustion due to the high participation of spectrally
absorbing-emitting CO, and H,O

Turbulence-radiation interaction — widely-used RANS
averaged models do not take into account local fluid
property fluctuations which have impact on radiation
and chemistry

Lack of validation data
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Temperature Profile
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Fate of Mercury in Coal

. Homogeneous
Combustion reactions,
Happen in the convection
duct or Flue gas
Heat Cl, EEO> HCI treatment line when
’\ temperature is around
P 200 - 500 °C.

---'\

L----

Hg(O) HgCl, HgCl, , HgO - Hg (1)
Coal &? and Hg(P)

(Containing

10-100 PPM
of Hg) g
Heterogeneous
Unburned reactions,
Carbon Happen in the Flue gas

f treatment line when
Char temperature is around

100 - 350 °C.
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Interaction of Pollutants in Air-Coal Combustion

Chlorine (Cl, /f HCI

Source: Cl —Fuel

Cl — fuel (HCI/Cl; in flue gas) is the most
important oxidizer for the Mercury. The
chlorined - activated carbon is an effective

sorbent for Hg removal. However if Sulfur
removes Cl from the carbon surface, Hg

removal is decreased. Cl effectisnot
important in heterogeneous reactions.

Mercurvy

Source: Hz — Fuel

BEemovwval: Activated Carbon sorbent

Steam
Source: Combustion product, Recyded flue

gas.

Inhibition effect on Hg oxidationin
presence of Cl

No

—

/

" e

Source: Thermal NO, and Fuel NO,, (N —

ay

UBC helps the removal process of Hg (II)
(depending on the process temperature, (SO,
HCl and NO,} concentration, tvpe of coal,
particle size and surface area).

Unburnt Carbon (in flv ash)

Source: Inefficient char combustion process,
mainlv in fuel rich zones

Removal: Using filters or bag houses (Physical
separation}

There is a competition between Sulfur and
Mercury for Carbon surface reaction. S50,
generation inhibits Hg removal by activated
carbon, since there is a higher concentration of
Sulfur compounds in the flue gas than Hg.

[

d&mcﬁ on due to Hg Removal

/}mnv&l: FGD unit using solvents

Fuel}

Pemoval: Low NO, bumers

S0,

In fue

mavw inhibit NO, reduction reaction.

lrich zones, § — Fuel which forms S0,

Source: S — Fuel, Also Sulfur mav enter
the svstem in the flue gas reatment line.
Formation: During devolatilisation
{as H,5) and during char oxidation

{as 80, which will oxidize to 50, in

the gas phase)

50, inhibits CO oxidation
by affecting [OH]

CcO
Source:
Incomplete combustion of
coal

|

V’
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Interaction of Pollutants in Oxy-CO,-Coal Combustion

Chlorine (Cl, /f HCT

Source: Cl — Fuel

Cl—fuel (HCI/Cl, in flue gas) is the most
important oxidizer for the Mercury. The
chlorined - activated carbon is an effective
sorbent for Hg removal. However if Sulfur

removes Cl from the carbon surface, Hg

removal is decreased. Cl effectis not
important in heterogeneous reactions.

Mercurv

ﬂ Steam

There is more steam in the
combustion Zone in Oxy combustion.

Source: Hg — Fuel

Removal: Activated Carbon sorbent

Inhibition effect on Hg oxidation in

presence of Cl

/

ﬂ

UBC helps the removal process of Hg
(depending on the process temperature, (50,
HCl and NO,) concentration, tvpe of coal,
particle size and surface area).

vy

ﬂ Unburnt Carbon (in flv ash)

In Oxy combustion, due to Oxyvgen
deficiency in some zones, Unburnt Carbon
in ash is higher. So there is a direct effect
on the heterogeneous reactions of Carbon —
Mercury.

There is a competition between Sulfur and
Mercury for Carbon surface reaction. 50,
generation inhibits Hg removal by activated
carbon, since there is a higher concentration of
Sulfur compounds in the flue gas than Hg.

ll .

In Oxy combustion, there is a
decrease in NO, generated in the
furnace, however there is a distinction

between NO and NO; effect on He
oxidation.

ﬂ S0,

In fuel rich zones, 5 — Fuel which forms 50,
may inhibit NO, reduction reaction.

In Oxy combustion, there is an

increase of 50, in

the combustion zone. So far, there is a
direct effect on the heterogeneous

reactions of Carbon —
Mercury — Sulfur.

50, inhibits CO oxidation
by affecting [OH]

co
Source:
Incomplete combustion of
coal

|

h
éﬁ:mcﬁ on due to Hg Removal /1>
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Formulation from database of
narrow band k-distributions
(based on LBL data)

¢ 

Gases Larger particles Soot

Sr.)eaes accounted for Mie Theory for larger particles in Mie Theory reduces to
in NB database are the geometric limit — Two main the Rayleigh scattering
€02, €O, H20 and properties to be predicted for limit due to the size

CHA. non-uniform particle cloud parameter of the soot
particles

size distribution Absorption extinction
factor

/\ - @

Char Ash Char Ash
Particle size Fragmentation Geometric limit: More complex
distribution from means ash not same Qabs=1/2(f1+f2) expression still
Rosin-Rammler input psd as char. Size Dependent upon n and requires n and k
to Fluent is possible distribution must be k for the particles and dependence
modelled hence wavenumber
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Radiative properties of gases

N v
Line by line methods Band models Total emissivity /
[ | absorption methods

Narrow band models Wide band models
\
Statistical NBM K-distribution NBM - no Edwards EWBM
(Malkmus, Goody etc) approx based on LBL data
v \
Narrow band k-dist models Full Spectrum k-
e.g. Av=25cm? (I, assumed distribution FSK model
constant in band) (Weighted by 1,)
|
v \’
— . —|
Direct formulation from Formulation from database of
LBL database narrow band k-distributions ’

| (based on LBL data)
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Slagging, Fouling and Corrosion Steam/Water
Mechanism Development

Heat Transfer
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Mechanism Development Overview

e Char Oxidation Mechanism Development
 Heat Transfer (Radiation Model) Development
e Soot Mechanism Development

e Pollutants Emission Mechanism Development
e Slagging & Fouling Mechanism Development

e Corrosion Mechanism Development

Mechanism Validation
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Evaluation of CFD Simulation Options for Oxy-Coal Combustion

Consultation with Industry
@ Hg/Cl Radiation
etal release
HT
Soot

ormation

Slagging

Char
Oxidation

Volatile
.ﬁ Combustion

Low . . High
Impact On Oxy-Fuel CFD Simulation Accuracy

Devolyization

I
Concern Over availability of Physical Model s °§-

Low




School of Process, Environmental

and Materials Engineering
FACULTY OF ENGINEERING UNIVERSITY OF LEED

In-depth Studies of OxyCoal Combustion
Processes through Numerical Modelling and 3D
Flame Imaging
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Impact of High Concentrations of SO2 and SO3 in Carbon
Capture Applications and its Mitigation
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Oxyfuel Combustion - Academic Programme for the UK
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