School of Process, Environmental and Materials Engineering ENERGY AND RESOURCES RESEARCH INSTITUTE



## Biomass Residues as Power Station Fuels

Leilani I. Darvell, Jenny M. Jones, Bijal Gudka, Xiaomian Baxter, Alan Williams

University of Leeds

Alf Malmgren RWE Power International

### Introduction



#### Feedstock for co-firing in the UK by type, quantity and source

|   | Feedstock                                                                         | Quantity<br>burned<br>(tonnes)<br>In 2005 | %<br>quantity<br>burned<br>(tonnes)<br>In 2005 | Likely<br>country of<br>origin     | Mode of<br>transport | Total transport-<br>related<br>emissions<br>(kg CO <sub>2</sub> /tonne<br>biomass) |
|---|-----------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------|----------------------|------------------------------------------------------------------------------------|
|   | Energy crops (SRC,granulated willow,<br>miscanthus)                               | 4,306                                     | 0.3                                            | UK                                 | Road                 | 1.7                                                                                |
| + | Shea residues (meal and pellets)                                                  | 5,420                                     | 0.4                                            | Africa                             | Ship                 | 55.4                                                                               |
|   | Sunflower pellets                                                                 | 20,331                                    | 1.4                                            | Romania                            | Road & ship          | 47.1                                                                               |
|   | Sewage sludge and waste derived<br>fuels                                          | 49,155                                    | 3.5                                            | υκ                                 | Road                 | 3.4                                                                                |
|   | Cereal co products and pellets                                                    | 102,246                                   | 7.2                                            | UK                                 | Road                 | 1.7                                                                                |
|   | Tallow                                                                            | 119,828                                   | 85                                             | UK                                 | Road                 | 1.7                                                                                |
| + | <ul> <li>Olive waste (residue and expeller)</li> </ul>                            | 283,222                                   | 20.1                                           | Greece, Italy<br>Spain             | Road & ship          | 21.2                                                                               |
|   | Wood (sawdust, chips, pellets, tall oil)                                          | 377,956                                   | 26.8                                           | UK, Canada,<br>Latvia, Scandinavia | Road & ship          | 1.7 (UK) to 42.9                                                                   |
|   | <ul> <li>Palm residues (palm kernel expeller,<br/>shell, pellets, oil)</li> </ul> | 449,657                                   | 31.8                                           | Indonesia,<br>Malaysia             | Road & ship          | 106.5 (Indonesia)<br>to 107.4<br>(Malaysia)                                        |
|   | Total mass                                                                        | 1,412,121                                 |                                                |                                    |                      |                                                                                    |
|   | Total energy (PJ)                                                                 | 14.1                                      |                                                |                                    |                      |                                                                                    |

Sources: UK Biomass Strategy, DEFRA, May 2007 & Evaluating the Sustainability of Co-firing in the UK, report to DTI from Themba Technology Ltd, September 2006

### Introduction: Imported biomass



Palm kernel expeller Shea residue Olive residue



- Oil extracted from both palm fruit (flesh) and kernel (nut)
- PKE: fibrous remains from the kernel oil extraction process.

- Shea butter extracted from kernel of shea fruit
- Residue: fleshy

mesocarp, shell and husk left after removal of butter

• Olive residues: crushed olive kernel, shell, pulp, skin

• Imported as cake, expeller, or pellets

Fuel samples provided by RWE nPower

### Aims



To examine the combustion properties of PKE, shea residue, and three different olive residues

To examine the nitrogen partitioning and char-N chemistry during combustion

## Methodology



- Fuel characterisation: ultimate, proximate, and metal analyses, ash behaviour (fouling and slagging indices)
- Nitrogen partitioning
- Studies of fuel chars:
  - 1. Characterisation: ultimate and proximate analyses
  - 2. Combustion by TGA-MS: char-N conversion to Ncontaining species

### **Results: Fuel characterisation**



| Parameter                          | PKE   | Shea residue | Olive residue A | Olive residue B | Olive residue C |
|------------------------------------|-------|--------------|-----------------|-----------------|-----------------|
| C (% daf)                          | 51.12 | 54.24        | 54.42           | 54.33           | 51.38           |
| H (% daf)                          | 7.37  | 6.58         | 6.82            | 7.20            | 6.32            |
| N (% daf)                          | 2.80  | 3.48         | 1.40            | 1.39            | 1.45            |
| O ( $\%$ daf) <sup>a</sup>         | 38.71 | 35.70        | 37.36           | 37.08           | 40.85           |
| C/N                                | 21.32 | 18.21        | 45.41           | 45.59           | 41.33           |
| Moisture (% ar)                    | 7.60  | 8.42         | 6.40            | 4.61            | 5.19            |
| Volatiles (% ar)                   | 72.12 | 57.06        | 65.13           | 70.68           | 55.51           |
| Fixed carbon $(\% \text{ ar})^a$   | 16.18 | 27.62        | 19.27           | 17.17           | 17.31           |
| Ash (% ar)                         | 4.10  | 6.90         | 9.20            | 7.54            | 21.99           |
| HHV (MJ/kg) dry basis <sup>b</sup> | 20.00 | 20.37        | 19.67           | 20.25           | 16.10           |
| Ash composition (% dry ba          | asis) |              |                 |                 |                 |
| $Al_2O_3$                          | 0.87  | 1.29         | 1.94            | 0.85            | 2.74            |
| CaO                                | 11.90 | 5.51         | 15.44           | 9.40            | 19.49           |
| Fe <sub>2</sub> O <sub>3</sub>     | 5.70  | 2.37         | 2.14            | 0.75            | 5.29            |
| K <sub>2</sub> O                   | 21.43 | 42.57        | 31.04           | 32.08           | 4.41            |
| MgO                                | 11.51 | 6.83         | 5.78            | 2.87            | 5.25            |
| Mn <sub>3</sub> O <sub>4</sub>     | 1.03  | 0.05         | 0.05            | 0.02            | 0.33            |
| Na <sub>2</sub> O                  | 0.41  | 0.95         | 0.47            | 0.33            | 0.35            |
| SiO <sub>2</sub>                   | 16.51 | 14.40        | 21.10           | 10.88           | 67.40           |
| Total ash components               | 69.35 | 73.97        | 77.96           | 57.18           | 105.25          |

<sup>a</sup> calculated by difference, <sup>b</sup> calculated by method in Friedl et al. 2005

## Results: Slagging and fouling indices



| Fuel            | Alkali index   | Base to     | Base       |  |
|-----------------|----------------|-------------|------------|--|
|                 | (kg alkali/GJ) | acid ratio* | percentage |  |
| PKE             | 0.48           | 2.93        | 50.94      |  |
| Shea residue    | 1.61           | 3.71        | 58.23      |  |
| Olive residue A | 1.57           | 2.38        | 54.87      |  |
| Olive residue B | 1.27           | 3.88        | 45.44      |  |
| Olive residue C | 0.69           | 0.50        | 34.79      |  |

\*TiO<sub>2</sub> not included

(Jenkins et al. 1998)

$$R_{b/a} = \% (\underline{Fe_2O_3 + CaO + MgO + K_2O + Na_2O}) \\ \% (SiO_2 + TiO_2 + Al_2O_3)$$

Al>0.34 kg alkali/GJ  $\longrightarrow$  fouling virtually certain! (Miles et al. 1996)

### Biomass ash softening temperatures





# Results: Fuel chars and nitrogen partitioning



| Parameters                                | PKE   | Shea residue | Olive residue A | Olive residue B | Olive residue C |
|-------------------------------------------|-------|--------------|-----------------|-----------------|-----------------|
| C (% daf)                                 | 91.46 | 89.34        | 84.30           | 85.78           | 86.23           |
| H (% daf)                                 | 2.74  | 3.14         | 2.50            | 2.64            | 3.48            |
| N (% daf)                                 | 4.37  | 2.49         | 1.10            | 1.40            | 1.18            |
| O $(\% \text{ daf})^a$                    | 1.43  | 5.04         | 12.10           | 10.17           | 9.12            |
| C/N                                       | 24.41 | 41.92        | 89.48           | 71.49           | 85.57           |
| Moisture (%) <sup>b</sup>                 | 0.26  | 0.98         | 0.00            | 0.81            | 0.36            |
| Ash (% dry basis) <sup>b</sup>            | 62.44 | 32.20        | 36.78           | 40.90           | 73.65           |
| Char yield (% dry basis) <sup>c</sup>     | 14.76 | 39.59        | 26.95           | 33.06           | 44.38           |
| Volatile yield (% dry basis) <sup>c</sup> | 85.24 | 60.41        | 73.05           | 66.94           | 55.62           |
| N partitioning                            |       |              |                 |                 |                 |
| N (%) in char                             | 9.03  | 20.67        | 18.22           | 17.32           | 12.22           |
| N (%) in volatiles                        | 90.97 | 79.33        | 81.78           | 82.68           | 87.78           |

<sup>a</sup> calculated by difference

<sup>b</sup> from combustion in STA-MS (hr 10 ℃ min<sup>-1</sup> to 600 ℃)

° from char preparation (hr 10 ℃ ms<sup>-1</sup> to 1000 ℃)

### **Results: Char-N conversions**



Masses monitored:  $m/z \ 14: N_2^{2+} and CO^{2+}$   $m/z \ 27: HCN + tail end of$   $m/z \ 28 signal$   $m/z \ 28:^{12}C^{16}O$   $m/z \ 30: NO + {}^{12}C^{18}O$   $m/z \ 43: HCNO$   $m/z \ 44: {}^{12}C^{16}O_2 + N_2O$   $m/z \ 46: NO_2 + {}^{12}C^{18}O^{16}O$  $m/z \ 52: C_2N_2$ 



PKE char

#### Shea residue char



### **Results: Char-N conversions**



Olive residue A char

### Olive residue B char

Olive residue C char









### **Results: Char-N conversions**



 $^{\ast}$  from  $N_2{}^{2+}$  signal and m/z 14:m/z 28 ratio=0.154

### Conclusions



- All fuels investigated show a high tendency to fouling and slagging, with ash softening temperatures <1100 ℃</li>
- Most of the N is lost in the volatiles (~80-90%)
- Most of the char-N is released as  $N_2$  and  $NO_x$  in combustion
- Other species detected: HCN and C<sub>2</sub>N<sub>2</sub> in small quantities (from PKE and olive residue B chars)
- Similarly to coal, N is retained until near the end of char combustion stage, with NO as a primary product

## Acknowledgements



✓ Financial support from EPSRC SUPERGEN Bioenergy Consortium under Grant EP/E039995/1

 ✓ Ms. B. Gudka acknowledges the SUPERGEN Bioenergy Consortium for a DTA studentship & RWE npower funding
 ✓ Ms. S.H. Chen and Dr. M. Kubacki's contributions with some of the fuel analysis data is also acknowledged

