An Overview of Mercury Monitoring Options

David Graham, Uniper Technologies Ltd.
Introduction

• What do we need to measure?
 • Total mercury $Hg^T = Hg^0 + Hg^{2+} + Hg^P$
 • $Hg^P << (Hg^0 + Hg^{2+})$
 • Vapour phase Hg sufficient for coal fired plant with modern control technology

• What is emitted?
 Depends on PM control technology
 • ESP only: Hg^0 and Hg^{2+}
 Hg^{2+} is water soluble
 • ESP + FGD: mostly Hg^0
 • ESP + FGD + SCR: mostly Hg^0
 $Hg^0 \rightarrow Hg^{2+}$ enhanced by the SCR catalyst
Anticipated range of mercury concentration?

![Graph showing anticipated range of mercury concentration](image)

- ESP only (50%)
- ESP+FGD (75%)
- ESP+FGD+SCR (90%)
Options for mercury monitoring I

- Periodic measurement to EN 13211:2001
 - Industrial Emissions Directive ‘For combustion plants firing coal or lignite, the emissions of total mercury shall be measured at least once per year.’
 - Flue gas @ 20 to 30 l/min, for 1 to 2 h, >1Nm³
 - Probe/filter >120°C
 - Cooled impingers (KMnO₄/H₂SO₄) (Breakthrough<5%)
EN13211 ≡ Ontario-Hydro Method (OHM)

EVALUATION AND COMPARISON OF U.S. AND EU REFERENCE METHODS FOR MEASUREMENT OF MERCURY, HEAVY METALS, PM2.5 AND PM10 EMISSIONS FROM FOSSIL-FIRED POWER PLANTS

Dr. Nenad Sarunac, Energy Research Center, Lehigh University Feb 2007 (tested in July 2006 at Armstrong PP)
Options for mercury monitoring II

- Continuous measurement to EN 14884:2005
 - LCP BREF Continuous monitoring required unless it can be demonstrated by other means that the ELV will not be exceeded
Options for mercury monitoring II

- Continuous measurement to EN 14884
- Instrumental methods
- Primary measurement is Hg0
- Convertor Hg$^{2+} \rightarrow$ Hg$^0 \rightarrow$ HgT
- Speciation by:
 - Converter switching in/out
 - Hg$^{2+} = Hg^T$ (in) $- Hg^0$ (out)

Courtesy Tekran Instrument Corporation
Continuous analysis - Approach 1A CVAFS

- Sample dilution with gold trap amalgamation
- Inertial probe to exclude particulate (M&C)
- Heated inert transfer lines
- Dilution ratios 40:1 (PSA); 30:1 (Tekran)
- Thermo-catalytic converter \rightarrow Hg^T
- Dual gold traps - continuous sampling – 3min cycle - Ar
- CV Atomic Fluorescence Spectrometry
- Very linear and selective (no SO_2 interf.)
- Detection limits (PSA):
 - 0.1 pg (absolute mass)
 - 4 ng/m3 (40:1, 1 dm3 sample vol)
Continuous analysis - Approach 1B CVAFS

- Sample dilution without gold trap amalgamation
- Inertial probe to exclude particulate
- Heated inert transfer lines (Thermo – converter at stack – simplifies transport)
- Dilution ratios 40:1 (Thermo); 50:1 (Gasmet)
- Thermo-catalytic converter → HgT
- Thermo-Scientific and Gasmet direct reading CVAFS
- Diluted sample (no gold traps) Carrier N₂
Continuous analysis - Approach 2 AAS (no dilution)
Continuous analysis - Approach 3 DOAS

Courtesy Opsis
Continuous analysis - Approach 1A results

Power plant in the Netherlands (PS Analytical)

<table>
<thead>
<tr>
<th>CEM result /µg m⁻³</th>
<th>OHM result (RM) /µg m⁻³</th>
<th>Difference (d) /µg m⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.36</td>
<td>17.29</td>
<td>0.07</td>
</tr>
<tr>
<td>12.46</td>
<td>12.02</td>
<td>0.44</td>
</tr>
<tr>
<td>20.93</td>
<td>19.28</td>
<td>1.65</td>
</tr>
<tr>
<td>19.90</td>
<td>18.04</td>
<td>1.86</td>
</tr>
<tr>
<td>8.39</td>
<td>8.73</td>
<td>-0.34</td>
</tr>
<tr>
<td>8.94</td>
<td>9.11</td>
<td>-0.17</td>
</tr>
<tr>
<td>7.82</td>
<td>7.38</td>
<td>0.45</td>
</tr>
<tr>
<td>7.03</td>
<td>6.49</td>
<td>0.55</td>
</tr>
<tr>
<td>7.97</td>
<td>6.83</td>
<td>1.14</td>
</tr>
<tr>
<td>7.98</td>
<td>6.90</td>
<td>1.08</td>
</tr>
<tr>
<td>9.22</td>
<td>8.25</td>
<td>0.97</td>
</tr>
<tr>
<td>7.64</td>
<td>8.14</td>
<td>-0.51</td>
</tr>
<tr>
<td>11.30</td>
<td>10.70</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Continuous analysis - Approach 1B results

```
<table>
<thead>
<tr>
<th>Test Run</th>
<th>Date</th>
<th>Start Time</th>
<th>End Time</th>
<th>Reference Method Hg</th>
<th>CEM Output Hg</th>
<th>(RM-CEM) Difference (di)</th>
<th>Difference^2 (di^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>11/04/08</td>
<td>1522</td>
<td>1552</td>
<td>3.0</td>
<td>2.8</td>
<td>0.15</td>
<td>0.02</td>
</tr>
<tr>
<td>1 2</td>
<td>11/04/08</td>
<td>1615</td>
<td>1645</td>
<td>3.0</td>
<td>2.8</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>1 3</td>
<td>11/05/08</td>
<td>1027</td>
<td>1057</td>
<td>1.3</td>
<td>1.2</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>0 4</td>
<td>11/05/08</td>
<td>1117</td>
<td>1147</td>
<td>0.6</td>
<td>1.0</td>
<td>-0.39</td>
<td>0.15</td>
</tr>
<tr>
<td>1 5</td>
<td>11/05/08</td>
<td>1203</td>
<td>1233</td>
<td>0.8</td>
<td>0.9</td>
<td>-0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>1 6</td>
<td>11/05/08</td>
<td>1246</td>
<td>1321</td>
<td>0.9</td>
<td>0.9</td>
<td>0.05</td>
<td>0.00</td>
</tr>
<tr>
<td>1 7</td>
<td>11/05/08</td>
<td>1340</td>
<td>1430</td>
<td>0.7</td>
<td>0.9</td>
<td>-0.14</td>
<td>0.02</td>
</tr>
<tr>
<td>1 8</td>
<td>11/05/08</td>
<td>1545</td>
<td>1631</td>
<td>0.7</td>
<td>0.7</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>1 9</td>
<td>11/05/08</td>
<td>1646</td>
<td>1729</td>
<td>0.6</td>
<td>0.7</td>
<td>-0.06</td>
<td>0.00</td>
</tr>
<tr>
<td>1 10</td>
<td>11/5/2008</td>
<td>1749</td>
<td>1819</td>
<td>0.9</td>
<td>0.8</td>
<td>0.08</td>
<td>0.01</td>
</tr>
</tbody>
</table>
```

Meets specifications for annual RA

Courtesy Thermo Fisher Scientific
Continuous analysis - Approach 1B results
Continuous analysis – High temperature

Heated probe → Sampling filter → Thermal Conversion

Hg reduction

Measurement method

Atomic absorption spectroscopy (AAS) with integrated Zeeman cross sensitivity correction

Courtesy Sick Gmbh
European QA standards

Operator’s responsibilities:
- Installation of compliant equipment (QAL1)
- In-situ calibration of CEMs using an accredited test laboratory (QAL2) (audit)
- Annual check of the calibration (AST)
- Ongoing QA based on regular zero and span checks (QAL3)
- Submission of QAL2 & AST reports and ongoing maintenance of records
- Checking of hourly averages against the Valid Calibration Range (weekly)
Certification of CEMs - MCERTS

<table>
<thead>
<tr>
<th>Certificate Holder</th>
<th>Model</th>
<th>Certified Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durag GmbH</td>
<td>HM 1400 TRX Mercury Analyser</td>
<td>0 to 45 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 to 75 µg/m³</td>
</tr>
<tr>
<td>Opsis AB</td>
<td>AR 602Z/Hg</td>
<td>0 to 45 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 to 100 µg/m³</td>
</tr>
<tr>
<td>SICK MAIHAK GmbH</td>
<td>MERCEM300Z Mercury Monitoring System</td>
<td>0 to 10 µg/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 to 45 µg/m³</td>
</tr>
</tbody>
</table>
Options for mercury monitoring III

- Semi-Continuous measurement to prEN XXXX (ex US)
- LCP BREF Semi-Continuous monitoring allowed

Relative Deviation <= 10%

Laboratory analysis following …
Thermal desorption
Leaching or Digestion

Courtesy Ohio-Lumex
Options for mercury monitoring III

One week sampling intervals
Also used as an SRM in the US

Sorbent Sampler Systems

Clean Air Met-80
Environmental Supply HGK-PF
Altech Environment Amesa-M
Apex Instruments XC-6000

M&C STS

Courtesy Ohio-Lumex
Options for mercury monitoring III

- Heated Sample Probe
- Packing Gland
- Sorbent Traps
- Cabinet
- MercSampler™ Console
- Stirling Gas Conditioner
- A/C
- Heated U-Cord

Reliable and Easy To Use

Laptop
Pedestal (Optional)

Courtesy Apex Instruments
Sorbent Trap Method ≡ OHM ≡ EN13211
How much does it all cost?

HgCEMS v. Sorbent tubes
Ownership Costs

Cumulative Cost of Ownership

Year of Operation of HgCEMS

$800,000
$600,000
$400,000
$200,000
$

0 1 2 3 4 5 6

HgCEMS
Vavg

Courtesy Tekran Instrument Corporation
Concluding Remarks

- EU mercury monitoring requirements are increasing
- Concentration levels are low for coal fired plant
- Periodic measurement to EN 13211:2001
 - Annual test under IED (from 1 Jan 2016)
 - Accredited Test Laboratory (ISO 17025)
- Continuous measurement to EN 14884:2005
 - LCP BREF requires this unless alternative means of demonstrating compliance (2021?)
 - Various techniques available (HgT as Hg0)
- Certification is limited but UK, European & US instruments have the required sensitivity
- Capital outlay and running costs are high
- Semi-Continuous measurement to prEN XXX
 - Simple measurement with rigorous QA
- Capital outlay lower but analysis costs to consider