B.M. Franchetti

F. Cavallo Marincola

M. Rabacal

A.M. Kempf | akempf@uni-due.de

Large-Eddy Simulation of Pulverised Coal Combustion

- We develop C-LES since 1999
- PsiPhi since 2007
- Optimised for LES and DNS
- Massively parallel (2¹⁵ cores)
- Gas, spray, coal flames
- Nano particle synthesis
- Engine simulations

- We develop C-LES since 1999
- PsiPhi since 2007
- Optimised for LES and DNS
- Massively parallel (2¹⁵ cores)
- Gas, spray, coal flames
- Nano particle synthesis
- Engine simulations

- We develop C-LES since 1999
- PsiPhi since 2007
- Optimised for LES and DNS
- Massively parallel (2¹⁵ cores)
- Gas, spray, coal flames
- Nano particle synthesis
- Engine simulations

- We develop C-LES since 1999
- PsiPhi since 2007
- Optimised for LES and DNS
- Massively parallel (2¹⁵ cores)
- Gas, spray, coal flames
- Nano particle synthesis
- Engine simulations

Background: LES

Large-Eddy Simulation vs. RANS (classical CFD)

***** RANS

- Time-averaged, steady
- "Photo, long exposure"
- All turbulent fluctuations must be modelled.
- Correlations of fluctuations must also be modelled! ➡
- Closure models matter!
- Numerics matter little.

× LES

- Locally filtered, unsteady
- "Movie, slightly blurred"
- Strong fluctuations are calculated.
- Correlations of strong fluctuations just calculated.
- Closure models matter little.
- Accurate numerics needed!

Backgrou

Large-Eddy Simulati

- Time-averaged, s²
- "Photo, long expc
- All turbulent fluctulents must be modelled.
- Correlations of flue must also be mod
- Closure models matter:
- Numerics matter little.

ations are

RANS (steady)ated.

- of strong just calculated.
- Ciosare models matter little.
- Accurate numerics needed!

Background: LES

Large-Eddy Simulation vs. RANS (classical CFD)

***** RANS

- Time-averaged, steady
- "Photo, long exposure"
- All turbulent fluctuations must be modelled.
- Correlations of fluctuations must also be modelled! ➡
- Closure models matter!
- Numerics matter little.

× LES

- Locally filtered, unsteady
- "Movie, slightly blurred"
- Strong fluctuations are calculated.
- Correlations of strong fluctuations just calculated.
- Closure models matter little.
- Accurate numerics needed!

Backgr Lerge Eddy Sim

Large-Eddy Sim

- *** RANS**
- Time-average
- # "Photo, long
- All turbulent f must be mod
- Correlations must also be
- Closure mod
- Numerics matter little.

teady rred" are

ong Ilculated.

atter little.

Accurate numeros needed!

Background: LES

Large-Eddy Simulation vs. RANS (classical CFD)

***** RANS

- Time-averaged, steady
- "Photo, long exposure"
- All turbulent fluctuations must be modelled.
- Correlations of fluctuations must also be modelled! ➡
- Closure models matter!
- Numerics matter little.

× LES

- Locally filtered, unsteady
- "Movie, slightly blurred"
- Strong fluctuations are calculated.
- Correlations of strong fluctuations just calculated.
- Closure models matter little.
- Accurate numerics needed!

steady

ırred"

s are

Background: LES

Large-Eddy Simulation vs. RANS (classical CFD)

***** RANS

- Time-ave
- "Photo, Ic
- All turbule must be n

LES

vaivuialea.

LES is a different approach (new paradigm), not a different "turbulence model"!

- Correlations of fluctuations must also be modelled! ➡
- Closure models matter!
- Numerics matter little.

- Correlations of strong fluctuations just calculated.
- Closure models matter little.
- Accurate numerics needed!

CRIEPI Burner

Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S, Kempf, A.M, Large Eddy Simulation of a Pulverised Coal Jet Flame, Proc. Combust. Inst. 34 (2013) 2419-2426.

- Small scale jet burner
- Coal: 0.149 g/s
- Methane pilot, 23 cm³/s
- **■** Re ≈ 2300
- 10⁷ computational cells
- Euler-Lagrange LES

UNIVERSITĂT DUISBURG

IFRF Flame B1

- Primary: d=0.07m, 40.7m/s, 212kg/h, 463K
- Secondary: d=0.2m, 9.6m/s, 773K
- Turbulence: Smagorinsky
- Postulate substance
- Devolatilisation: First order single rate (Badzioch, Hawksley)
- Char combustion: Intrinsic reacition rate model (Smith)
- Radiation: DOM, (grey products, volatiles), particles scatter
- Mesh: 2.8M / 6.7M cells (2cm)³

J.B. Michel, R. Payne. Detailed measurements of long pulverized coal flames for the characterisation of pollutant formation. Tech. Report, IFRF, 1980.

UNIVERSITĂT DUISBURG

IFRF Flame B1

- Primary: d=0.07m, 40.7m/s, 212kg/h, 463K
- Secondary: d=0.2m, 9.6m/s, 773K
- Turbulence: Smagorinsky
- Postulate substance
- Devolatilisation: First order single rate (Badzioch, Hawksley)
- Char combustion: Intrinsic reacition rate model (Smith)
- Radiation: DOM, (grey products, volatiles), particles scatter
- Mesh: 2.8M / 6.7M cells (2cm)³

J.B. Michel, R. Payne. Detailed measurements of long pulverized coal flames for the characterisation of pollutant formation. Tech. Report, IFRF, 1980.

Aachen OXYCOAL-AC furnace

- Realistic swirl burner
- Oxyfuel
- 40 kW_{th}

	kg/h	0	Т
Coal feed	6,5	ı	1
Primary	17,6	0.19/	40
Secondary	26,6	0.21/0.79	60
Tertiary	1,5	0.21/0.79	60
Staging	54,9	0.21/0.79	900

Proximate Analysis	[wt %]
Moisture	8,4
Ash	4,1
Volatile Matter	46,6
Fixed Carbon	40,9

Simulation

- Cartesian grid: 400 x 400 x 800 mm
- Grid: $\Delta = 1$ mm, 128 million cells
- **■** 384 cores, 2 weeks (~1000€)
- Ca. 2.5 million numerical particles
- Cray XE6m at Duisburg-Essen & Cluster of Chair

Mass Fraction Oxygen

Mass Fraction Oxygen

Axial Velocity

Gas Temperature

Mass Fraction CO

Mass Fraction H₂O

Eddy Viscosity

Symposium 2014

Assessment by a reviewer:

"Oxy-fuel coal combustion systems will not be in operation soon (most probably even never) so the authors should orient their efforts to the air burning of low quality coals..."

Peak into latest work

- IST Large Scale Lab Furnace, 100kW, D=0.6m
- Work by M. Rabacal, co-supervised by Mario Costa
- 365 M cells of 1mm
- HPC: 8000 cores (PRACE, SuperMUC)

(accepted)

Summary

- LES of coal combustion is a reality (new paradigm!)
- Pilot-scale combustors can be predicted reasonably
- Now: Time to apply and time to improve sub models
 - Subgrid modelling
 - Devolatilisation Modelling
 - Radiation
- Gas phase combustion (M. Rieth, Duisburg) (Flamelets, DFG Project with Hasse, Kronenburg)
- Biomass combustion (M. Rabacal, Duisburg)

Acknowledgements

EPSRC OxyCAP, EPSRC China

FCT (Portugal)

Center for Computational Sciences and Simulation (CCSS) of Duisburg-Essen University

PRACE & SuperMUC

Nguyen, Proch, Rittler, Stein, Pettit, Wysocki, Ma, Rieth Gibbins, Hasse, Costa

Thank you for your attention!

