Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

John W. G. Clark
Research Engineer
Efficient Fossil Energy Technologies EngD Centre
University of Nottingham, UK

Academic supervisor: Prof. Graham McCartney
Industrial Supervisor: Dr. Chris Bullough, Alstom
John Clark, Research Engineer, University of Nottingham, UK
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Collaborators

The University of Nottingham
EPSRC
BF2RA
ALSTOM
e-on
EPRI
Engineering Doctorate (EngD) Centre Efficient Fossil Energy Technologies
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Scope of the Presentation

- **Background to the problem**
 - Software methods
 - Efforts to simulate steel-steel interfaces
 - Construction of the model
 - Historical data for validation
 - Extension to steel-nickel interfaces
 - Wider applicability of software methods
Background (1)

- Power plant steam vessels are made from several different alloys depending on local temperature e.g. 2.25-Cr steel in low temperature sections, 9-Cr steel in higher temperature sections.
- These different alloys must be joined by fusion welding, a process which can negatively impact their properties.
- During long term exposure to service conditions diffusion of elements can occur across the welded interface, changing the chemical and mechanical properties of both alloys.
- With the drive to increase plant efficiency, joints will be exposed to higher temperatures and joints involving nickel-based alloys be introduced.
Background (2)

- Additionally, older power plants are being pushed beyond their designed service life.
- The consequences of long term, high temperature exposure are not necessarily well known, so predictive tools such as computational thermodynamics are of great use.
- Using these methods the interdiffusion that will occur at interfaces during welding, heat treatment and service can be predicted.
- These methods may also be used to aid in the design of new alloys, for welding and for bulk applications, that minimise diffusion or whose properties are less affected by diffusion.
Dissimilar Metal Interfaces

Need to join dissimilar metals.

- Low-chromium steel (< 550 °C)
- High-chromium steel (550 – 650 °C)
- Nickel alloy (> 650 °C)

Increasing Temperature

Cheaper alloys used where possible

More expensive alloys used where required
Joining Methods

- Metal pipe sections are joined together by multi-pass fusion welding.
- The weld metal is completely melted and re-solidified, as is some of the base metal.
- Adjacent parts of the base metal will have their microstructure altered by the process; these are the heat affected zones (HAZ).
- These effects must be accounted for when considering how welds will behave during service, both in terms of mechanical properties (e.g. creep resistance) and chemical behaviour.
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Multi-pass Fusion Welds

Base metal	Weld Metal

HAZ

e.g. 9-Cr steel | e.g. Nickel alloy 625

Diffusion driven by chemical potential gradients

Atomic diffusion will occur across the interfaces at elevated temperature.
John Clark, Research Engineer, University of Nottingham, UK
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Failure Mechanisms at Fusion Welds

- Mismatched coefficients of thermal expansion between base and weld metals can lead to stress build-up during thermal cycling.
- The creep strength of both alloys may be lower than under ideal conditions due to the after-effects of welding.
- Diffusion across the interface leads to localised change in mechanical properties and the precipitation and dissolution of secondary phases, particularly carbides.
- Oxide particles at the surface of the weld interface can act as stress concentrators, causing a notch at the fusion line; this is exacerbated by the presence of secondary phases.
Cracking can occur around the weld during service.
Project Overview

Numerical Simulation

Experimental Validation

Generic Models

Steel-Steel

Steel-Nickel
Scope of the Presentation

- Background to the problem
- **Software methods**
 - Efforts to simulate steel-steel interfaces
 - Construction of the model
 - Historical data for validation
 - Extension to steel-nickel interfaces
 - Wider applicability of software methods
Mathematics of Interdiffusion

- Across a dissimilar interface diffusion of elements will occur to attain equilibrium.
- In a simple 1D binary system this follows Fick’s law:

\[
\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}
\]

- In a multicomponent system, however, diffusion of each species is driven by chemical potential gradients of all species.
- A coupled set of differential equations is required to solve the problem, necessitating the use of numerical methods.
Mathematics of Interdiffusion: DICTRA

- The DICTRA software is used to solve these equations.

\[D_{jk} = -\sum_{i=1}^{n} L_{ki} \frac{\partial \mu_i}{\partial c_j} \]

- The diffusivities \((D_{jk})\) can be split into a thermodynamic term and a kinetic term.

- These are calculated separately, using data from empirical databases and combined to solve the diffusion problem in 1D between cells.

- ThermoCalc, a closely related software tool, is called as a subroutine to solve the thermodynamics.
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Thermokinetic Software: DICTRA

The process is cycled for as much time as the user defines.
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Thermokinetic Software: DICTRA

Metal matrix

Secondary phase e.g. carbide

Diffusion path, affected by secondary phases

Computational methods are needed to account for secondary phases.
Scope of the Presentation

- Background to the problem
- Software methods
- **Efforts to simulate steel-steel interfaces**
 - Construction of the model
 - Historical data for validation
- Extension to steel-nickel interfaces
- Wider applicability of software methods
John Clark, Research Engineer, University of Nottingham, UK
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Literature Overview & Related Works

Qualitative studies
e.g. Optical micrograph & hardness profile

Quantitative Studies
e.g. WDX (electron microprobe) data

Carbon enriched and denuded zones seen at interface.

From Sudha, 2006
From Million et al., 1995
Ferritic-Ferritic Interfaces

Ferritic Steel A

Ferritic Steel B

Homogenisation + Precipitation

Like crystal structures make simulations straightforward.
Ferritic-Ferritic Interfaces: Results

Optical micrograph & hardness profile

Simulation in DICTRA

Simulation agrees well with experiment.

From Sudha, 2006

Clark, 2013

9-Cr Steel

2.25-Cr Steel
Ferritic-Ferritic Interfaces: Results (2)

WDX (electron microprobe) data

Simulation in DICTRA

Simulation agrees well with experiment.

From Foret, 2001
Clark, 2013
John Clark, Research Engineer, University of Nottingham, UK

Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Ferritic-Ferritic Interfaces: Results (3)

WDX data & simulation in MatCalc

Simulation in DICTRA

Simulation agrees well with experiment.

From Kozeschnik, 2001

Clark, 2013
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Scope of the Presentation

- Background to the problem
- Software methods
- Efforts to simulate steel-steel interfaces
 - Construction of the model
 - Historical data for validation
- Extension to steel-nickel interfaces
- Wider applicability of software methods
The Ferrite-Austenite Problem

- Steel-steel simulations are straightforward, as both sides have the ferritic (body-centred cubic) crystal structure.

 ![Ferritic Steel A](image1.png) ![Ferritic Steel B](image2.png)

- Stainless steels and nickel alloys are austenitic (face-centred cubic), which complicates matters; two distinct matrix phases are needed.

 ![Ferritic Steel](image3.png) ![Austenitic Steel or Nickel Alloy](image4.png)
The Ferrite-Austenite Problem (2)

Options:

- Boundary conditions
- Running two simulations simultaneously
- Alternative mathematical frameworks

On-going research activity.
Ferrite-Austenite Simulations

SEM Image

Speculative DICTRA simulation

Further refinement of the model is required.
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Scope of the Presentation

- Background to the problem
- Software methods
- Efforts to simulate steel-steel interfaces
 - Construction of the model
 - Historical data for validation
- Extension to steel-nickel interfaces

Future work and wider applicability
Research Work

Simulation

Ferritic-Ferritic Interfaces

Ferritic-Austenitic Interfaces

Validation

Published data

- As-welded and ex-service steel-nickel fusion weldments
- Steel-nickel diffusion couple

Published data

John Clark, Research Engineer, University of Nottingham, UK
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces
Modelling Chemical & Microstructural Evolution at Dissimilar Metal Interfaces

Wider Usage in Power Plant Metallurgy

- Simulation of solidification dynamics after welding dissimilar alloys.
- Alloy design (e.g. weld consumables for minimal diffusion).
- Properties of protective coatings (e.g. MCrAlY, NiCr-CrC).
- Phase stability of alloys after long term service.
- Oxidation and carburisation behaviour.
- Interfaces between other alloys, welded or otherwise.

These methods could also be extended to other industries and other sets of alloys; computational thermodynamics is a powerful and versatile toolkit.
Thank you for listening.

Any questions?
Appendix: 4-Year Gantt Chart

<table>
<thead>
<tr>
<th>Activity</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taught Elements of EngD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EngD Centre Summer School</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Software Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 1 Critical assessment of benchmark data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2 Modelling ferritic–ferritic interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3 Modelling austenitic–ferritic interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual EngD progress report and presentation</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Preparation of EngD Thesis and final report to sponsors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>