

Coal Research Forum 23rd AGM and meeting of the combustion division

Drax power Ltd, Drax Power Station, Selby, North Yorkshire. 25th April 2012

An Overview of Oxyfuel Combustion Academic Programme for the UK (OxyCAP UK)

Ignatio Trabadela and Jon Gibbins

jon.gibbins@ed.ac.uk

Research Councils UK Carbon Capture and Storage in the Energy Programme

CCS has been identified as a priority area for the Energy Programme. We now support over £38M in current grants for 36 research and capacity building projects in CCS including:

4 Consortia researching carbon capture and transport (3 jointly supported with E.ON). £6.5m investment.

EPSRC-E.ON Strategic Partnership, CCS: OxyCAP UK

Objective: "to develop academic research capability for oxy-fuel combustion in five key areas":

- 1) New experimental techniques for oxy-fuel combustion.
- 2) Advanced computer modelling techniques (LES, integrated CFD/system)
- 3) Experimental data on coal ash/boiler material behaviour under oxy-fuel conditions.
- 4) UK capacity in oxy-fuel fluidised bed combustion (FBC).
- 5) Training & development new researchers.

Link and information flow between tasks-OxyCAP UK Project

University of Cambridge

Task: ST1-A, application of optical diagnostic techniques to particle laden flows

Goals: a) Create a database of turbulent combustion experiments with coal particles

- b) Analyze the difference between oxy-firing and air-firing and to
- c) Identify the limitations of optical diagnostic techniques to the coal combustion.

Methodology: Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and chemiluminescence imaging techniques to generate flow and scalar field measurements.

Researchers: Saravanan Balusamy, Alexander Schmidt, Simone Hochgreb, Stuart Scott, John Dennis.

Images/content courtesy of University of Cambridge

Cranfield University

Task: ST1-A (P.F. exp. Oxycomb), STI3-A & ST3-B

Goals: a) Study oxyfuel combustion

b) Ash transformation.

c) Ash deposition and corrosion studies.

Ash Deposit Probe CCP 100%

Methodology: Experiments in 150 kWh oxyfuel combustion with RFG.

Analysis of morphology of the ash comparing different fuels.

Researchers: Nelia Jurado, Hamid Darabkhani, John E Oakey.

Images/content courtesy of Cranfield University

University of Edinburgh

Task: ST1-A (P.F. exp. Oxy-combustion), ST5-B (technical coordination).

Goals: a) Determine safe levels of O_2 in O_2/CO_2 in FGR.

- b) Mill safety.
- c) Ignition/combustion fundamentals under oxyfuel conditions.

Methodology: Coal dust ignition tests under oxy-fuel conditions in 20 L and 200L bombs. Peak pressure and dP/dt. Analysis of char from ignition with TGA.

Researchers: Ignacio Trabadela, Hannah Chalmers, Jon Gibbins.

Images/content courtesy of University of Edinburgh

Imperial College

Task: ST2-A (LES for Oxy-combustion).

Goals: a) Improve understanding of oxy-combustion.

b) Model coal particles burning in oxy-combustion and other species.

Methodology: LES, development of code from Eulerian-Eulerian to Eulerian-Lagrangian Use LES for air combustion before oxy-combustion simulation.

Researchers: Benjamin Franchetti, Fabrizio Cavallo Marincola, Andreas Kempf.

Images/content courtesy of Imperial College London

University of Kent

Task: ST1-A (P.Fexp. Oxycomb), STI4 & ST5 (web)

Goals: a) 3D Flame imaging.

- b) Flow metering and on-line sizing of pulverised coal.
- c) Particle image characterization.

Methodology: The 3-D temperature distribution of flame cross-and longitudinal sections can be measured based on two-colour method.

Researchers: Y. Yan, G. Lu, M. M. Hossain and L. Gao.

Images/content courtesy of University of Kent

University of Leeds

Task: ST1-A, ST2A, ST2B, ST2C & ST5AB (financial & technical coordination.)

Goals: a) PF Oxy-combustion fundamentals (and fuel characterisation).

b) LES, CFD and global plant simulation.

Figures: non-reactive mean axial and axial R.M.S velocities (LES: PsiPhi, LES: FLUENT)

Figure: Mean axial velocity from PsiPhi

Methodology: Oxy/air solid fuels CTF 250 kW rig (PACT facilities).

Develop CFD sub-models and Large Eddy Simulation.

Researchers: János Szuhánszki, Sandy Black, Alessandro Pranzitelli, M. Pourkashanian, L. Ma, and B. Nimmo.

Images/content courtesy of University of Leeds

University of Nottingham

Task: ST1-A (P.F. Oxyfuel combustion)

Goals: a) Coal devolatilisation and subsequent char burnout characteristics

- b) The effect of mineral matter and potential formation of carbonate species.
- c) Coal/biomass oxy-cofiring + char analysis.
- d) Water vapour content in FGR.

Methodology: Drop tube furnace (DTF) tests under conditions of different temperatures (up to 1500°C), residences times (≥ 25 ms) and oxy-combustion atmospheres (+TGA)

Researchers: Colin Snape, Chenggong Sun and Donglin Zhao.

Images/content courtesy of University of Nottingham

Research and Pathways to Impact Delivery (RAPID)

- The RAPID process will run throughout the course of the UKCCSRC
- Led by the Research Area Champions and gathering input from a wide range of academic, industry and other stakeholders.
- Results summarised in a RAPID Handbook.
- The first draft of the Handbook will be published after an intensive 4 month exercise at the project outset
- Handbook will be updated annually.

Stated Overall Challenge

Pathways to Impact

Academic Impacts

Worldwide academic advancement

Innovative methodologies, equipment, techniques, technologies and cross-disciplinary approaches

Contributing towards the health of academic disciplines

Enhancing the knowledge economy

Training highly skilled researchers

Improving teaching and learning

Improving health and well-being Wealth creation, economic prosperity and regeneration Enhancing the research capacity, knowledge and skills of public, private and third sector organisations Changing organisational culture and practices **Economic** and Societal Impacts Enhancing the effectiveness and sustainability of organisations including public services and businesses

Attracting R&D investment

Improving social welfare, social cohesion and/or national security

Commercialisation and exploitation

Enhancing cultural enrichment and quality of life

Environmental sustainability, protection and impact

Evidence based policy-making and influencing public policies

Increasing public engagement with research and related societal issues

<u>CRF Research Needs</u> - The key R,D&D challenges include:

- Improve the efficiency of coal fired power generation with effective removal of conventional pollutants such as SOx, NOx particulates and trace metals.
- Improve the use of more advanced steam cycles, for which the need to improve performance through materials selection is critically important.
- Improve plant integration, together with enhanced fuel and operational flexibility.
- Establish near zero emissions systems such that CO₂ can be prevented from being released to atmosphere, with any adverse technical impacts on such efficiency and environmental performance being minimised in as cost effective manner as possible. This will require large scale demonstrations of the first generation CO₂ capture systems and offshore CO₂ storage within a complete CCS chain.
- Improve effectiveness and costs of the first generation CO₂ capture systems and the development of second generation systems that will overcome some of the inherent disadvantages of the first.
- Gain a better understanding of the properties of CO₂ to ensure the provision of robust transport systems.
- Improve assessment and modelling of CO₂ storage capacity in various geological formations, together with the development of improved monitoring and verification techniques.

THINGS THAT ARE NEEDED	PROCESSES AND POSSIBLE EXAMPLES OF STAKEHOLDERS INVOLVED IN MAKING CCS HAPPEN		
Perceived need for CCS	Global climate Understanding role of CCS UK energy & climate policy change agreement		
Plans that include CCS	Global CCS development organisations: CSLF, Electricity market planners –DECC, GCCSI, IEAGHG, Clean Energy Ministerial CCUS Ofgem, National Grid, utilities		
Money to pay for CCS	Financial instruments to support CCS – government grants, EMR, carbon price, clean energy standards etc.	High-level	Very specific
Legal cover for CCS	CCS safety regulators - HSE Plant permitting – EA, SEPA Crown Estates	Long term	Immediate
Permitting, Regulation and Leasing	Offshore storage Onshore pipeline Offshore pipeline site permitting & permitting routing and leasing leasing	Demonstrable	Potential
Project liability protection	Government participation CCS project/process in storage liability insurance	Big	Small
Environmental sustainability	Process emissions Lifecycle emissions Site impacts Remediation options	Multiple impacts	Focussed impact
Public acceptance	Media Opinion formers Local groups Special interest groups		
Industry to produce and	Electricity utilities Steel with CCS Hydrocarbon extraction Merchant generators Cement with CCS and processing with CCS	Intentional	Serendipitous
capture CO ₂	Merchant generators Cement with CCS and processing with CCS Refining with CCS Synthetic fuels with CCS	UKCCSRC involved	3 rd party
CO ₂ transport systems	National Grid Offshore pipeline Pipeline T&S project developers		
	Onshore pipeline developers and Shipping T&S project developers developers and developers and developers	Plan preceded research	Plan followed research
CO ₂ storage sites -	Storage site developers CO ₂ EOR developers & Oil &gas companies (many roles)	Research	Deployment
CCS Hardware	Research & Development See Many stakeholders in technology 'funnel' - next R&D doers, funders, VCs, OEMs etc	impact	impact
oco maramare	slide	Tangible	Intangible
CCS-related Services	Input to project development, Consultants: e.g. engineering, sub- feasibility and FEED studies etc. surface, legal, environment Contractors	vehicle	vehicle
Operating/managing	Electricity market operators T&S system operators –	Publishable	Confidential
CCS systems in real time and day-to-day	— National Grid, utilities National Grid + others	Clear Attribution	Debatable
UKCCSRC + other	Research organisations & communities Ideas Facilities Evidence		
research input	Impact support Engagement Know-how Skilled people		

Energy Innovation Chain

