The Role of Modelling in Understanding Emissions from Biomass Combustion Plants

Graham Hawkes, Graham Macpherson, Mike Myers and Edward Naylor

6 December 2016
Frazer-Nash Consultancy

- 9 UK, 3 Australian Offices, 700+ employees.
- Systems Engineering Approach.

Aerospace and transport
- Aerospace
- Automotive
- Gas turbines
- Marine
- Rail and metro

Defence
- Air systems
- C4ISTAR
- Defence facilities
- Land systems
- Submarines

Nuclear
- Decommissioning
- Defence
- Fusion
- New build
- Power generation

Innovation and commerce
- Design services
- Due diligence
- Expert witness
- Health
- Software development

Security and resilience
- Commercial
- National defence
- Organisational resilience
- Critical national infrastructure
- Insider threat

Power and energy
- Gas turbines
- Oil and gas
- Power generation
- Power, transmission and distribution
- Renewable energy
Directive 2010/75/EU: A Perspective

- Regulations are becoming increasingly stringent, with more scrutiny placed on compliance:
 - How do we de-risk and assure new designs?
 - How do we improve reliability, performance and emissions of ageing equipment?

- What do recent advances in numerical modelling offer?:
 - Computer power:
 - Run more complex models
 - Include more physics
 - Physics:
 - Development and validation of improved physical models

- How can this be applied in practice?
Take an example: Article 50

- What is the spirit of this article?
- How could it be assessed in a numerical environment?
- What is the scope for flexibility within it?

Article 50

Operating conditions

1. Waste incineration plants shall be designed, equipped, built and operated in such a way that the gas resulting from the incineration of waste is raised, after the last injection of combustion air, in a controlled and homogeneous fashion and even under the most unfavourable conditions, to a temperature of at least 850°C for at least two seconds.
Opportunities for Advancement

- How do we quantify details of plant operation?
 - Can we accurately predict performance of new designs.
 - Diagnose issues on existing plant and validate models to real life data.

- Controlled and homogeneous:
 - How homogenous is good enough?

- What is the basis for 850°C for at least two seconds:
 - On average, this can be satisfied, but could some of the flow see 850°C for much less than 2 s.
 - Should credit be able to be taken for the temperature history (>1100°C typical)?
Computational Fluid Dynamics (CFD) Analysis

- CFD is a computational simulation method to predict flow characteristics:
 - Temperature, Velocity, Pressure.
- Combustion and chemistry can be modelled.
- Heat transfer by conduction, convection and radiation is possible.
- Whole furnace models can be built, and are within reach of cost-effective computational resources.
- Can use advanced multi-physics models to assess:
 - Erosion, corrosion, fouling, slagging.
 - Flow induced vibration, fatigue loading, noise.
Heat Recovery Solutions (HRS).
Turnkey clean energy power systems.
www.hrs.energy

Tansterne Biomass Power Plant.
22MWe powered by waste wood.

Frazer-Nash have assessed:
 Fluidised bed performance.
 Radiation section performance – power take-off and WID compliance.
 Sparge tube design.
 ITA, ATEX/DSEAR, HAZOP.
Two separate CFD models

Lower:
- Fluidised bed, resolving inflow through sparge tube holes.
- Fluidisation and heat transfer to tubes.

Upper:
- Radiant section with syn-gas and secondary air.
- Combustion and heat take-off.
- Models coupled loosely by control of boundary conditions
 - Check with adiabatic flame calculations.
Controlled and Homogeneous: Radiant Section Combustion and Flow

Flow velocity (m/s)

Temperature (K)

O₂ Mole Fraction
At least 850°C for at least 2 s:
Streamlines

- Can track transport of gases through thermal and turbulence fields.
 - Can be interrogated for statistical analysis.
 - Can be progressed to include species evolution.

- Assessment against Article 50:
 - Plot streamlines
 - Interrogate temperature history (>850°C)
 - Check time-of-flight
 - Mass flow weight and plot distribution
At least 850°C for at least 2 s:
Particle Temperature History

- Evaluate temperature history of transported gas from thousands of uniformly spaced starting positions (7 example tracks shown)
- Calculate time spent above 850°C
- Cumulative probability distribution of time spent above 850°C
- Series of plant conditions and CFD model sensitivities shown
Discussion

- CFD can be used as a tool to show invisible details of furnace operation.
 - We can predict performance of new designs and diagnose issues on existing plant.
 - HRS MD Mark Wickham:

 “We found the work you did essential in building confidence in the design”.

- Clever application of CFD is capable of significantly more in-depth analysis than the basic requirement of Article 50.
 - Homogeneity: Quantitative metrics can be developed.
 - Can we unlock the full potential of the analysis methods?

- CFD could be used to advance the “At least 850°C for at least two seconds”:
 - Taking credit for the temperature history (>1100°C typical) could be argued?
Thank you!

Dr Edward Naylor
e.naylor@fnc.co.uk
+44 (0)1306 885050

www.fnc.co.uk