Processing of hard coal fines by binder briquetting for use in smelting reduction processes

Motivation
- Hot metal production in 2013: about 1,165 million tons
- Routes of hot metal production by smelting reduction:
 - Conventional BF-Route
 - COREX® Route

Background
Advantages of COREX®/FINEX® smelting reduction processes in comparison to blast furnace:
- Higher flexibility against the raw materials quality
- Reduction of costs through retrenchment of coking and sinter plant
- Environmentally friendly production route for hot metal

Challenges:
- COREX®/FINEX® melter-gasifier needs lumpy fuel for stable operation
- But up to 50 % fines (grain size under 8 mm) due to transport & handling
Coals (High Volatile Bituminous Coals):

- Blumen (Sh)
- Molasses with Calcium hydroxide and Water
- Polyvinyl alcohol (Mowiol 47-88G2)

Briquetting conditions:
- Coal particle size distribution: 4/0 mm, 2/0 mm, 0.5/0 mm
- Briquetting pressure: 140 MPa
- Briquetting temperature: 60°C

Binders:
- Bitumen (Shell SBT)
- Molasses with Calcium hydroxide and Water
- Polyvinyl alcohol (Mowiol 47-88G2)

Test and qualification for briquettes:
- Cold strength
- Determination of Crushing Strength
- Drop Shatter Test according to ISO 616
- Tumbler test
- Hot strength
- Char-Strength after Pyrolysis
- Thermo-mechanical strength
- Reactivity
- Determination of CRI and CSR according to ISO 18894

Outline | Motivation | Background | Methods & Materials | Results & Discussion | Summary & Outlook

METHODS & MATERIALS

Coals (High Volatile Bituminous Coals):

<table>
<thead>
<tr>
<th>Name</th>
<th>Ash in %(d)</th>
<th>VM in %(d)</th>
<th>FC in %(d)</th>
<th>HGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total South African</td>
<td>15.2%</td>
<td>29.2%</td>
<td>55.6%</td>
<td>62</td>
</tr>
<tr>
<td>Ensham</td>
<td>11.2%</td>
<td>29.3%</td>
<td>59.4%</td>
<td>75</td>
</tr>
<tr>
<td>South Black Water</td>
<td>9.2%</td>
<td>26.2%</td>
<td>64.5%</td>
<td>88</td>
</tr>
</tbody>
</table>

Intermediate results:
- Best fit to FULLER Parable for Ensham with particle size 2/0 mm.
- Best cold crushing strength with binders.
- Binder releases show best cold crushing strength for coals TSA and Ensham with binders.

RESULTS AND DISCUSSION

Influence of particle size distribution on the briquettes strength:
RESULTS AND DISCUSSION

• Correlation between briquette strength and strength of char:
 - Qualitative correlation often found in literature
 - But: Impact of heating procedure according to coal and binder
 - Ideal curves of the applied heating procedures:

RESULTS AND DISCUSSION

Intermediate results:
- Fast heating procedure tends to result in higher crushing strength and adequate shatter strength → Positive for usage of briquettes in COREX®/FINEX® melter-gasifier
- Slow heating procedure done for comparison → No support of char crushing strength (except with binder molasses → explanation: generation of strong "sugar coke")
- Both char structures strong against dynamic mechanical load like impact

Parameter values:
- Particle size distribution: 0.5-1 mm
- Binder: 1% Polyvinyl alcohol (Mowiol 47-8802)
- Pressure: 140 MPa, Temperature: 60°C, Duration: 3 s
- Curing temperature: 150°C

Intermediate results:
- Raise of crushing strength by curing
- Duration of curing controls strength → Screening for optimal length necessary
- No support of shatter strength → Embrittlement of briquettes structure through curing

SUMMARY AND OUTLOOK

Summary:
- Laboratory briquetting tests show that generation of stable briquettes from hard coal fines by binder briquetting is possible
- One matrix-type binder as well as two film-type binders are investigated about their impact on briquettes strength and char quality
- Effect of "Curing" helps to stabilize briquettes structure controlled by duration of curing which affects the briquettes water content

Outlook:
- Additional tests on different types and amounts of binders related to economical aspects
- Scale-up tests with industrial roller press
ACKNOWLEDGEMENT

The scientific work is supported by the Austrian metallurgical competence center K1 MET which is funded in the framework of COMET – Competence Centers for Excellent Technologies by Federal Ministry for Transport, Innovation and Technology, Federal Ministry of Science and Research, State Upper Austria, State Styria, Styrian Business Promotion Agency (SFG), State Tyrol as well as “Tiroler Zukunftsfonds”· The COMET program is operated by the Austrian Research Promotion Agency (FFG).